Abstract
We consider online convex optimization with time-varying constraints and conduct performance analysis using two stringent metrics: dynamic regret with respect to the online solution benchmark, and hard constraint violation that does not allow any compensated violation over time. We propose an efficient algorithm called Constrained Online Learning with Doubly-bounded Queue (COLDQ), which introduces a novel virtual queue that is both lower and upper bounded, allowing tight control of the constraint violation without the need for the Slater condition. We prove via a new Lyapunov drift analysis that COLDQ achieves O(T 1+ 2 Vx) dynamic regret and O(TVg) hard constraint violation, where Vx and Vg capture the dynamics of the loss and constraint functions. For the first time, the two bounds smoothly approach to the best-known O(T 12) regret and O(1) violation, as the dynamics of the losses and constraints diminish. For strongly convex loss functions, COLDQ matches the best-known O(log T) static regret while maintaining the O(TVg) hard constraint violation. We further introduce an expert-tracking variation of COLDQ, which achieves the same performance bounds without any prior knowledge of the system dynamics. Simulation results demonstrate that COLDQ outperforms the state-of-the-art approaches.
Original language | English |
---|---|
Title of host publication | Proceedings of the 39th AAAI Conference on Artificial Intelligence, AAAI 2025 |
Publisher | AAAI press |
Pages | 21135-21143 |
Number of pages | 9 |
ISBN (Print) | 9781577358978, 157735897X |
DOIs | |
Publication status | Published - 11 Apr 2025 |
Event | 39th AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States Duration: 25 Feb 2025 → 4 Mar 2025 https://ojs.aaai.org/index.php/AAAI/issue/archive (Conference Proceedings) |
Publication series
Name | Proceedings of the AAAI Conference on Artificial Intelligence |
---|---|
Publisher | Association for the Advancement of Artificial Intelligence |
Number | 20 |
Volume | 39 |
ISSN (Print) | 2159-5399 |
ISSN (Electronic) | 2374-3468 |
Conference
Conference | 39th AAAI Conference on Artificial Intelligence, AAAI 2025 |
---|---|
Country/Territory | United States |
City | Philadelphia |
Period | 25/02/25 → 4/03/25 |
Internet address |
|