Domain Adaptive Ensemble Learning

Kaiyang Zhou*, Yongxin Yang, Yu Qiao, Tao Xiang

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

153 Citations (Scopus)

Abstract

The problem of generalizing deep neural networks from multiple source domains to a target one is studied under two settings: When unlabeled target data is available, it is a multi-source unsupervised domain adaptation (UDA) problem, otherwise a domain generalization (DG) problem. We propose a unified framework termed domain adaptive ensemble learning (DAEL) to address both problems. A DAEL model is composed of a CNN feature extractor shared across domains and multiple classifier heads each trained to specialize in a particular source domain. Each such classifier is an expert to its own domain but a non-expert to others. DAEL aims to learn these experts collaboratively so that when forming an ensemble, they can leverage complementary information from each other to be more effective for an unseen target domain. To this end, each source domain is used in turn as a pseudo-target-domain with its own expert providing supervisory signal to the ensemble of non-experts learned from the other sources. To deal with unlabeled target data under the UDA setting where real expert does not exist, DAEL uses pseudo labels to supervise the ensemble learning. Extensive experiments on three multi-source UDA datasets and two DG datasets show that DAEL improves the state of the art on both problems, often by significant margins.

Original languageEnglish
Pages (from-to)8008-8018
Number of pages11
JournalIEEE Transactions on Image Processing
Volume30
DOIs
Publication statusPublished - 17 Sept 2021

Scopus Subject Areas

  • Software
  • Computer Graphics and Computer-Aided Design

User-Defined Keywords

  • collaborative ensemble learning
  • Domain adaptation
  • domain generalization

Fingerprint

Dive into the research topics of 'Domain Adaptive Ensemble Learning'. Together they form a unique fingerprint.

Cite this