Does Invariant Graph Learning via Environment Augmentation Learn Invariance?

Yongqiang Chen, Yatao Bian, Kaiwen Zhou, Binghui Xie, Bo Han, James Cheng

Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

24 Citations (Scopus)

Abstract

Invariant graph representation learning aims to learn the invariance among data from different environments for out-of-distribution generalization on graphs. As the graph environment partitions are usually expensive to obtain, augmenting the environment information has become the de facto approach. However, the usefulness of the augmented environment information has never been verified. In this work, we find that it is fundamentally impossible to learn invariant graph representations via environment augmentation without additional assumptions. Therefore, we develop a set of minimal assumptions, including variation sufficiency and variation consistency, for feasible invariant graph learning. We then propose a new framework Graph invAriant Learning Assistant (GALA). GALA incorporates an assistant model that needs to be sensitive to graph environment changes or distribution shifts. The correctness of the proxy predictions by the assistant model hence can differentiate the variations in spurious subgraphs. We show that extracting the maximally invariant subgraph to the proxy predictions provably identifies the underlying invariant subgraph for successful OOD generalization under the established minimal assumptions. Extensive experiments on 12 datasets including DrugOOD with various graph distribution shifts confirm the effectiveness of GALA.

Original languageEnglish
Title of host publication37th Conference on Neural Information Processing Systems, NeurIPS 2023
EditorsA. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, S. Levine
PublisherNeural Information Processing Systems Foundation
Number of pages34
ISBN (Print)9781713899921
Publication statusPublished - 10 Dec 2023
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - Ernest N. Morial Convention Center, New Orleans, United States
Duration: 10 Dec 202316 Dec 2023
https://proceedings.neurips.cc/paper_files/paper/2023 (Conference Paper Search)
https://openreview.net/group?id=NeurIPS.cc/2023/Conference#tab-accept-oral (Conference Paper Search)
https://neurips.cc/Conferences/2023 (Conference Website)

Publication series

NameAdvances in Neural Information Processing Systems
Volume36
ISSN (Print)1049-5258
NameNeurIPS Proceedings

Conference

Conference37th Conference on Neural Information Processing Systems, NeurIPS 2023
Country/TerritoryUnited States
CityNew Orleans
Period10/12/2316/12/23
Internet address

Fingerprint

Dive into the research topics of 'Does Invariant Graph Learning via Environment Augmentation Learn Invariance?'. Together they form a unique fingerprint.

Cite this