TY - GEN
T1 - Disentangle Then Calibrate
T2 - 25th International Conference on Medical Image Computing and Computer Assisted Intervention, MICCAI 2022
AU - Chen, Yuanyuan
AU - Guo, Xiaoqing
AU - Xia, Yong
AU - Yuan, Yixuan
N1 - This work was supported in part by the National Natural Science Foundation of China under Grants 62171377, in part by the Key Research and Development Program of Shaanxi Province under Grant 2022GY-084, in part by Hong Kong Research Grants Council (RGC) Early Career Scheme grant 21207420 (CityU 9048179), and in part by Hong Kong RGC Collaborative Research Fund grant C4063- 18G (CityU 8739029).
Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022/9/16
Y1 - 2022/9/16
N2 - Annotated images for rare disease diagnosis are extremely hard to collect. Therefore, identifying rare diseases based on scarce amount of data is of far-reaching significance. Existing methods target only at rare diseases diagnosis, while neglect to preserve the performance of common disease diagnosis. To address this issue, we first disentangle the features of common diseases into a disease-shared part and a disease-specific part, and then employ the disease-shared features alone to enrich rare-disease features, without interfering the discriminability of common diseases. In this paper, we propose a new setting, i.e., generalized rare disease diagnosis to simultaneously diagnose common and rare diseases. A novel selective treasure sharing (STS) framework is devised under this setting, which consists of a gradient-induced disentanglement (GID) module and a distribution-targeted calibration (DTC) module. The GID module disentangles the common-disease features into disease-shared channels and disease-specific channels based on the gradient agreement across different diseases. Then, the DTC module employs only disease-shared channels to enrich rare-disease features via distribution calibration. Hence, abundant rare-disease features are generated to alleviate model overfitting and ensure a more accurate decision boundary. Extensive experiments conducted on two medical image classification datasets demonstrate the superior performance of the proposed STS framework.
AB - Annotated images for rare disease diagnosis are extremely hard to collect. Therefore, identifying rare diseases based on scarce amount of data is of far-reaching significance. Existing methods target only at rare diseases diagnosis, while neglect to preserve the performance of common disease diagnosis. To address this issue, we first disentangle the features of common diseases into a disease-shared part and a disease-specific part, and then employ the disease-shared features alone to enrich rare-disease features, without interfering the discriminability of common diseases. In this paper, we propose a new setting, i.e., generalized rare disease diagnosis to simultaneously diagnose common and rare diseases. A novel selective treasure sharing (STS) framework is devised under this setting, which consists of a gradient-induced disentanglement (GID) module and a distribution-targeted calibration (DTC) module. The GID module disentangles the common-disease features into disease-shared channels and disease-specific channels based on the gradient agreement across different diseases. Then, the DTC module employs only disease-shared channels to enrich rare-disease features via distribution calibration. Hence, abundant rare-disease features are generated to alleviate model overfitting and ensure a more accurate decision boundary. Extensive experiments conducted on two medical image classification datasets demonstrate the superior performance of the proposed STS framework.
UR - http://www.scopus.com/inward/record.url?scp=85139063479&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-16437-8_49
DO - 10.1007/978-3-031-16437-8_49
M3 - Conference proceeding
AN - SCOPUS:85139063479
SN - 9783031164361
T3 - Lecture Notes in Computer Science
SP - 512
EP - 522
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2022
A2 - Wang, Linwei
A2 - Dou, Qi
A2 - Fletcher, P. Thomas
A2 - Speidel, Stefanie
A2 - Li, Shuo
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 18 September 2022 through 22 September 2022
ER -