TY - JOUR
T1 - Direct and sensitive detection of circulating miRNA in human serum by ligase-mediated amplification
AU - Chan, Hei Nga
AU - Ho, See Lok
AU - He, Dinggeng
AU - Li, Hung Wing
N1 - Funding Information:
This work is supported by the Collaborative Research Fund Scheme of the Hong Kong Research Grant Council (C2012-15G).
PY - 2020/1/1
Y1 - 2020/1/1
N2 - MicroRNAs (miRNA) involve in regulating different physiological processes whose dysregulation is associated with a wide range of diseases including cancers, diabetes and cardiovascular problems. Herein, we report a direct, sensitive and highly selective detection assay for circulating microRNA (miRNA). This detection strategy employs magnetic nanoparticles as the reaction platform which can not only allow online pre-concentration and selective separation but also integrates ligation reaction with amplification to enhance the sensitivity of the detection assay. With the presence of the target miRNA, the locked nucleic acid (LNA)-modified molecular beacon (MB) opens up, exposing the binding sites at two ends. The 3’- and 5’-end of the MB responsible for the attachment onto the magnetic nanoparticles, and reporting probe for the attachment of the pair of amplification probes respectively. The ligase ligate RNA to DNA enhance the amplification efficiency. Upon labelled with intercalating fluorophores (YOYO-1) on the hybrids, the quantification of the target miRNA was determined by measuring the fluorescence intensity. A detection limit of 314 fM was achieved with trace amount of sample consumption (~20 μL). As a proof of concept, miRNA-149 was chosen as the target miRNA. This assay is capable of discriminating single-base and reliably quantifying circulating miRNA-149 in both healthy and cancer patient's serums. The result obtained was comparable with that of quantitative reverse transcription polymerase chain reaction (qRT-PCR), suggesting that this direct and sensitive assay can be served as a promising, non-invasive tool for early diagnosis of breast cancer and colorectal cancer.
AB - MicroRNAs (miRNA) involve in regulating different physiological processes whose dysregulation is associated with a wide range of diseases including cancers, diabetes and cardiovascular problems. Herein, we report a direct, sensitive and highly selective detection assay for circulating microRNA (miRNA). This detection strategy employs magnetic nanoparticles as the reaction platform which can not only allow online pre-concentration and selective separation but also integrates ligation reaction with amplification to enhance the sensitivity of the detection assay. With the presence of the target miRNA, the locked nucleic acid (LNA)-modified molecular beacon (MB) opens up, exposing the binding sites at two ends. The 3’- and 5’-end of the MB responsible for the attachment onto the magnetic nanoparticles, and reporting probe for the attachment of the pair of amplification probes respectively. The ligase ligate RNA to DNA enhance the amplification efficiency. Upon labelled with intercalating fluorophores (YOYO-1) on the hybrids, the quantification of the target miRNA was determined by measuring the fluorescence intensity. A detection limit of 314 fM was achieved with trace amount of sample consumption (~20 μL). As a proof of concept, miRNA-149 was chosen as the target miRNA. This assay is capable of discriminating single-base and reliably quantifying circulating miRNA-149 in both healthy and cancer patient's serums. The result obtained was comparable with that of quantitative reverse transcription polymerase chain reaction (qRT-PCR), suggesting that this direct and sensitive assay can be served as a promising, non-invasive tool for early diagnosis of breast cancer and colorectal cancer.
KW - Circulating microRNAs
KW - Early cancer diagnosis
KW - Ligation amplification
KW - Magnetic nanoprobe
UR - http://www.scopus.com/inward/record.url?scp=85072148280&partnerID=8YFLogxK
U2 - 10.1016/j.talanta.2019.120217
DO - 10.1016/j.talanta.2019.120217
M3 - Journal article
C2 - 31514897
AN - SCOPUS:85072148280
SN - 0039-9140
VL - 206
JO - Talanta
JF - Talanta
M1 - 120217
ER -