TY - JOUR
T1 - Designing magnesium-selective ligands using coordination chemistry principles
AU - Walter, Edward R.H.
AU - Hogg, Christopher
AU - Parker, David
AU - Gareth Williams, J. A.
N1 - Funding Information:
We thank Durham University and EPSRC for support of this work.
Publisher Copyright:
© 2020 Elsevier B.V. All rights reserved.
PY - 2021/2/1
Y1 - 2021/2/1
N2 - Progress in the selective binding and detection of magnesium ions has been slower than other biologically important divalent metal ions like calcium and zinc. The most widely used ligands for Mg2+ are by no means optimal, as they are not selective for it. Nevertheless, Mg2+ is a major cation in all cells, with physiologically critical functions. There is a need for improved sensors for Mg2+. In this review, we consider how an appreciation of fundamental coordination chemistry principles may inform the development of new ligands for Mg2+. A number of representative examples of ligands of differing denticity are discussed in this context. Low-denticity ligands such as β-keto acids offer the best selectivities, but speciation is an issue as other polydentate ligands such as pyrophosphate may complete the coordination sphere. High-denticity ligands based on aminocarboxylates such as APTRA typically offer the highest stability constants, but they bind Ca2+ and Zn2+ more strongly than Mg2+. We highlight recent examples featuring related aminophosphinates, where the longer bonds and smaller bite angles favour selectivity towards Mg2+. Macrocyclic receptors for magnesium are not discussed explicitly.
AB - Progress in the selective binding and detection of magnesium ions has been slower than other biologically important divalent metal ions like calcium and zinc. The most widely used ligands for Mg2+ are by no means optimal, as they are not selective for it. Nevertheless, Mg2+ is a major cation in all cells, with physiologically critical functions. There is a need for improved sensors for Mg2+. In this review, we consider how an appreciation of fundamental coordination chemistry principles may inform the development of new ligands for Mg2+. A number of representative examples of ligands of differing denticity are discussed in this context. Low-denticity ligands such as β-keto acids offer the best selectivities, but speciation is an issue as other polydentate ligands such as pyrophosphate may complete the coordination sphere. High-denticity ligands based on aminocarboxylates such as APTRA typically offer the highest stability constants, but they bind Ca2+ and Zn2+ more strongly than Mg2+. We highlight recent examples featuring related aminophosphinates, where the longer bonds and smaller bite angles favour selectivity towards Mg2+. Macrocyclic receptors for magnesium are not discussed explicitly.
KW - Fluorescence imaging
KW - Fluorescence spectroscopy
KW - Ligand design
KW - Magnesium
KW - Selectivity
KW - Sensing
UR - http://www.scopus.com/inward/record.url?scp=85096170152&partnerID=8YFLogxK
U2 - 10.1016/j.ccr.2020.213622
DO - 10.1016/j.ccr.2020.213622
M3 - Journal article
SN - 0010-8545
VL - 428
JO - Coordination Chemistry Reviews
JF - Coordination Chemistry Reviews
M1 - 213622
ER -