Density functional theory study of CsCn- (n = 1-10) clusters

J. Y. Qi, L. Dang, M. D. Chen, W. Wu, Q. E. Zhang, C. T. Au

Research output: Contribution to journalJournal articlepeer-review

10 Citations (Scopus)

Abstract

In this paper, we report the design of numerous models of CsC n- (n = 1-10). By means of B3LYP density functional method, we carried out geometry optimization and calculation on the vibrational frequency. We found that the CsCn- (n = 4-10) clusters with Cs lightly embraced by Cn are ground-state isomers. The structures are composed of Cn2- and Cs+ with the former being electronically stabilized by the latter. When n is even, the Cn (n -4-10) chain is polyacetylene-like. The CsCn - (n -1-10) with even n are found to be more stable than those with odd n, and the result is in accord with the relative intensities of CsC n- (n = 1-10) observed in mass spectrometric studies. In this paper, we provide explanations for such trend of even/ odd alternation based on concepts of the highest vibrational frequency, incremental binding energy, electron affinity, and dissociation channels.

Original languageEnglish
Pages (from-to)12456-12462
Number of pages7
JournalJournal of Physical Chemistry A
Volume112
Issue number48
DOIs
Publication statusPublished - 4 Dec 2008

Scopus Subject Areas

  • Physical and Theoretical Chemistry

Fingerprint

Dive into the research topics of 'Density functional theory study of CsCn- (n = 1-10) clusters'. Together they form a unique fingerprint.

Cite this