TY - JOUR
T1 - Deep learning for privacy preservation in autonomous moving platforms enhanced 5G heterogeneous networks
AU - Wu, Yulei
AU - Ma, Yuxiang
AU - Dai, Hong Ning
AU - Wang, Hao
N1 - Funding Information:
This work was partially supported by the Engineering and Physical Sciences Research Council of United Kingdom under Grant No. EP/R030863/1.
Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2021/2/11
Y1 - 2021/2/11
N2 - 5G heterogeneous networks have become a promising platform to connect a growing number of Internet-of-Things (IoT) devices and accommodate a wide variety of vertical services. IoT has not been limited to traditional sensing systems since the introduction of 5G, but also includes a range of autonomous moving platforms, e.g., autonomous flying vehicles, autonomous underwater vehicles, autonomous surface vehicles as well as autonomous land vehicles. These platforms can be used as an effective means to connect air, space, ground, and sea mobile networks for providing a wider diversity of Internet services. Deep learning has been widely used to extract useful information from network big data for enhancing network quality-of-service and user quality-of-experience. Privacy preservation for user and network data is a burning concern in 5G heterogeneous networks due to various attacks in this environment. In this paper, we conduct an in-depth investigation on how deep learning can cope with privacy preservation issues in 5G heterogeneous networks, in terms of heterogeneous radio access networks (RANs), beyond-RAN networks, and end-to-end network slices, followed by a set of key research challenges and open issues that aim to guide future research.
AB - 5G heterogeneous networks have become a promising platform to connect a growing number of Internet-of-Things (IoT) devices and accommodate a wide variety of vertical services. IoT has not been limited to traditional sensing systems since the introduction of 5G, but also includes a range of autonomous moving platforms, e.g., autonomous flying vehicles, autonomous underwater vehicles, autonomous surface vehicles as well as autonomous land vehicles. These platforms can be used as an effective means to connect air, space, ground, and sea mobile networks for providing a wider diversity of Internet services. Deep learning has been widely used to extract useful information from network big data for enhancing network quality-of-service and user quality-of-experience. Privacy preservation for user and network data is a burning concern in 5G heterogeneous networks due to various attacks in this environment. In this paper, we conduct an in-depth investigation on how deep learning can cope with privacy preservation issues in 5G heterogeneous networks, in terms of heterogeneous radio access networks (RANs), beyond-RAN networks, and end-to-end network slices, followed by a set of key research challenges and open issues that aim to guide future research.
KW - 5G
KW - Deep learning
KW - Heterogeneous networks
KW - Network slicing
KW - Privacy preservation
UR - http://www.scopus.com/inward/record.url?scp=85099231285&partnerID=8YFLogxK
U2 - 10.1016/j.comnet.2020.107743
DO - 10.1016/j.comnet.2020.107743
M3 - Journal article
AN - SCOPUS:85099231285
SN - 1389-1286
VL - 185
JO - Computer Networks
JF - Computer Networks
M1 - 107743
ER -