Cytotoxic cis-ruthenium(iii) bis(amidine) complexes

Tao Liu, Chen Pan, Huatian Shi, Tao Huang, Yong-Liang Huang, Yang-Yang Deng, Wen-Xiu Ni*, Wai-Lun Man*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

4 Citations (Scopus)

Abstract

In chemotherapy, the search for ruthenium compounds as alternatives to platinum compounds is proposed because of their unique properties. However, the geometry effect of ruthenium complexes is sparely investigated. In this paper, we report the synthesis of a series of bis(acetylacetonato)ruthenium(III) complexes bearing two amidines (1−) in a cis configuration. These complexes are highly cytotoxic against various cancer cell lines, including a cisplatin-resistant cell line. In vitro studies suggested that the representative complex can induce cell cycle G0/G1 phase arrest, decrease the mitochondrial membrane potential, elevate the intracellular reactive oxygen species level, and cause DNA damage and caspase-mediated mitochondrial pathway apoptosis in NCI-H460 cells. In vivo, it can effectively inhibit tumor xenograft growth in nude mouse models with no body weight loss. In combination with the reported trans-bis(amidine)ruthenium(III) complexes, we found that ruthenium(III) bis(amidine) complexes could be cytotoxic in both trans and cis geometries, which is in contrast to platinum-based compounds.
Original languageEnglish
Pages (from-to)8540–8548
Number of pages9
JournalDalton Transactions
Volume52
Issue number25
Early online date21 Mar 2023
DOIs
Publication statusPublished - 7 Jul 2023

Scopus Subject Areas

  • Inorganic Chemistry

Fingerprint

Dive into the research topics of 'Cytotoxic cis-ruthenium(iii) bis(amidine) complexes'. Together they form a unique fingerprint.

Cite this