TY - JOUR
T1 - Cyclic bandwidth with an edge added
AU - Chan, W. H.
AU - Lam, Peter C.B.
AU - Shiu, W. C.
N1 - Funding Information:
Partially supported by Faculty Research Grant (FRG/06-07/II-28), Hong Kong Baptist University and CERG (HKBU210207), Research Grant Council, Hong Kong.
PY - 2008/1/1
Y1 - 2008/1/1
N2 - Bc (G) denotes the cyclic bandwidth of graph G. In this paper, we obtain the maximum cyclic bandwidth of graphs of order p with adding an edge e ∈ E [over(G, -)] as follows:Bc (G + e) = { fenced((2 Bc (G), if Bc (G) ≤ frac(p, 8),; ⌈⌉ fenced(frac(1, 3) fenced(⌊⌋ fenced(frac(p, 2)) + 2 Bc (G))), if Bc (G) > frac(p, 8) .)). We also show that this bound is sharp.
AB - Bc (G) denotes the cyclic bandwidth of graph G. In this paper, we obtain the maximum cyclic bandwidth of graphs of order p with adding an edge e ∈ E [over(G, -)] as follows:Bc (G + e) = { fenced((2 Bc (G), if Bc (G) ≤ frac(p, 8),; ⌈⌉ fenced(frac(1, 3) fenced(⌊⌋ fenced(frac(p, 2)) + 2 Bc (G))), if Bc (G) > frac(p, 8) .)). We also show that this bound is sharp.
KW - Bandwidth
KW - Cyclic bandwidth
UR - http://www.scopus.com/inward/record.url?scp=35648979535&partnerID=8YFLogxK
U2 - 10.1016/j.dam.2007.09.011
DO - 10.1016/j.dam.2007.09.011
M3 - Journal article
AN - SCOPUS:35648979535
SN - 0166-218X
VL - 156
SP - 131
EP - 137
JO - Discrete Applied Mathematics
JF - Discrete Applied Mathematics
IS - 1
ER -