Abstract
In unsupervised domain adaptation, distributions of visual representations are mismatched across domains, which leads to the performance drop of a source model in the target domain. Therefore, distribution alignment methods have been proposed to explore cross-domain visual representations. However, most alignment methods have not considered the difference in distribution structures across domains, and the adaptation would subject to the insufficient aligned cross-domain representations. To avoid the misclassification/misidentification due to the difference in distribution structures, this paper proposes a novel unsupervised graph alignment method that aligns both data representations and distribution structures across the source and target domains. An adversarial network is developed for unsupervised graph alignment, which maps both source and target data to a feature space where data are distributed with unified structure criteria. Experimental results show that the graph-aligned visual representations achieve good performance on both cross-dataset recognition and cross-modal re-identification.
Original language | English |
---|---|
Title of host publication | 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 |
Publisher | AAAI press |
Pages | 5613-5620 |
Number of pages | 8 |
ISBN (Electronic) | 9781577358091 |
DOIs | |
Publication status | Published - 17 Jul 2019 |
Event | 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 - Honolulu, United States Duration: 27 Jan 2019 → 1 Feb 2019 https://ojs.aaai.org/index.php/AAAI/issue/view/246 |
Publication series
Name | Proceedings of the AAAI Conference on Artificial Intelligence |
---|
Conference
Conference | 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019 |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 27/01/19 → 1/02/19 |
Internet address |
Scopus Subject Areas
- Artificial Intelligence