Covariate-adjusted nonlinear regression

Xia Cui*, Wensheng Guo, Lu Lin, Lixing ZHU

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

63 Citations (Scopus)

Abstract

In this paper, we propose a covariate-adjusted nonlinear regression model. In this model, both the response and predictors can only be observed after being distorted by some multiplicative factors. Because of nonlinearity, existing methods for the linear setting cannot be directly employed. To attack this problem, we propose estimating the distorting functions by nonparametrically regressing the predictors and response on the distorting covariate; then, nonlinear least squares estimators for the parameters are obtained using the estimated response and predictors. Root n-consistency and asymptotic normality are established. However, the limiting variance has a very complex structure with several unknown components, and confidence regions based on normal approximation are not efficient. Empirical likelihood-based confidence regions are proposed, and their accuracy is also verified due to its self-scale invariance. Furthermore, unlike the common results derived from the profile methods, even when plug-in estimates are used for the infinitedimensional nuisance parameters (distorting functions), the limit of empirical likelihood ratio is still chi-squared distributed. This property eases the construction of the empirical likelihood-based confidence regions. A simulation study is carried out to assess the finite sample performance of the proposed estimators and confidence regions. We apply our method to study the relationship between glomerular filtration rate and serum creatinine.

Original languageEnglish
Pages (from-to)1839-1870
Number of pages32
JournalAnnals of Statistics
Volume37
Issue number4
DOIs
Publication statusPublished - Aug 2009

Scopus Subject Areas

  • Statistics and Probability
  • Statistics, Probability and Uncertainty

User-Defined Keywords

  • Asymptotic behavior
  • Confidence region
  • Covariate-adjusted regression
  • Empirical likelihood
  • Kernel estimation
  • Nonlinear least squares

Fingerprint

Dive into the research topics of 'Covariate-adjusted nonlinear regression'. Together they form a unique fingerprint.

Cite this