Abstract
Covalent triazine frameworks (CTFs) with two-dimensional conjugated structures and a high nitrogen content have potential for photocatalytic hydrogen evolution (PHE). Herein, we show a strategy to boost the photocatalytic performance of a CTF containing bipyridine (bpy) units (PhBp-CTF). Through a postcomplexation reaction of the PhBp-CTF with Ir2(ppy)4(μ-Cl)2, the Ir complexes of [Ir(bpy)(ppy)2]3+ are successfully embedded inside to form PhBp-CTF-Ir. The accurate content and valence state of Ir have been confirmed by advanced spectroscopies. PhBp-CTF-Ir shows a PHE rate of 4805 μmol g–1 h–1, while its precursor without Ir complexes has a rate of 3175 μmol g–1 h–1. The enhanced photocatalytic performance is attributed to the Ir complexes inside PhBp-CTF-Ir, which act as not only an effective photosensitizer but also a proton reduction catalyst.
Original language | English |
---|---|
Pages (from-to) | 7473–7478 |
Number of pages | 6 |
Journal | ACS Applied Energy Materials |
Volume | 5 |
Issue number | 6 |
Early online date | 3 Jun 2022 |
DOIs | |
Publication status | Published - 27 Jun 2022 |
Scopus Subject Areas
- Chemical Engineering (miscellaneous)
- Energy Engineering and Power Technology
- Materials Chemistry
- Electrical and Electronic Engineering
- Electrochemistry
User-Defined Keywords
- covalent triazine frameworks
- iridium complex
- photocatalyst
- photocatalytic hydrogen evolution
- photosensitizer