Core Knowledge Learning Framework for Graph

Bowen Zhang, Zhichao Huang, Guangning Xu, Xiaomao Fan, Mingyan Xiao, Genan Dai*, Hu Huang*

*Corresponding author for this work

Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

Abstract

Graph classification is a pivotal challenge in machine learning, especially within the realm of graph-based data, given its importance in numerous real-world applications such as social network analysis, recommendation systems, and bioinformatics. Despite its significance, graph classification faces several hurdles, including adapting to diverse prediction tasks, training across multiple target domains, and handling small-sample prediction scenarios. Current methods often tackle these challenges individually, leading to fragmented solutions that lack a holistic approach to the overarching problem. In this paper, we propose an algorithm aimed at addressing the aforementioned challenges. By incorporating insights from various types of tasks, our method aims to enhance adaptability, scalability, and generalizability in graph classification. Motivated by the recognition that the underlying subgraph plays a crucial role in GNN prediction, while the remainder is task-irrelevant, we introduce the Core Knowledge Learning (CKL) framework for graph adaptation and scalability learning. CKL comprises several key modules, including the core subgraph knowledge submodule, graph domain adaptation module, and few-shot learning module for downstream tasks. Each module is tailored to tackle specific challenges in graph classification, such as domain shift, label inconsistencies, and data scarcity. By learning the core subgraph of the entire graph, we focus on the most pertinent features for task relevance. Consequently, our method offers benefits such as improved model performance, increased domain adaptability, and enhanced robustness to domain variations. Experimental results demonstrate significant enhancements achieved by our method compared to state-of-the-art approaches. Specifically, our method achieves notable improvements in accuracy and generalization across various datasets and evaluation metrics, underscoring its effectiveness in addressing the challenges of graph classification.

Original languageEnglish
Title of host publicationProceedings of the 39th AAAI Conference on Artificial Intelligence, AAAI 2025
EditorsToby Walsh, Julie Shah, Zico Kolter
PublisherAAAI press
Pages13179-13187
Number of pages9
ISBN (Electronic)157735897X, 9781577358978
DOIs
Publication statusPublished - 11 Apr 2025
Event39th AAAI Conference on Artificial Intelligence, AAAI 2025 - Philadelphia, United States
Duration: 25 Feb 20254 Mar 2025
https://ojs.aaai.org/index.php/AAAI/issue/archive (Conference Proceedings)

Publication series

NameProceedings of the AAAI Conference on Artificial Intelligence
Number12
Volume39
ISSN (Print)2159-5399
ISSN (Electronic)2374-3468

Conference

Conference39th AAAI Conference on Artificial Intelligence, AAAI 2025
Country/TerritoryUnited States
CityPhiladelphia
Period25/02/254/03/25
Internet address

Fingerprint

Dive into the research topics of 'Core Knowledge Learning Framework for Graph'. Together they form a unique fingerprint.

Cite this