Consolidated domain adaptive detection and localization framework for cross-device colonoscopic images

Xinyu Liu, Xiaoqing Guo, Yajie Liu, Yixuan Yuan*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

38 Citations (Scopus)

Abstract

Automatic polyp detection has been proven to be crucial in improving the diagnosis accuracy and reducing colorectal cancer mortality during the precancerous stage. However, the performance of deep neural networks may degrade severely when being deployed to polyp data in a distinct domain. This domain distinction can be caused by different scanners, hospitals, or imaging protocols. In this paper, we propose a consolidated domain adaptive detection and localization framework to bridge the domain gap between different colonosopic datasets effectively, consisting of two parts: the pixel-level adaptation and the hierarchical feature-level adaptation. For the pixel-level adaptation part, we propose a Gaussian Fourier Domain Adaptation (GFDA) method to sample the matched source and target image pairs from Gaussian distributions then unify their styles via the low-level spectrum replacement, which can reduce the domain discrepancy of the cross-device polyp datasets in appearance level without distorting their contents. The hierarchical feature-level adaptation part comprising a Hierarchical Attentive Adaptation (HAA) module to minimize the domain discrepancy in high-level semantics and an Iconic Concentrative Adaptation (ICA) module to perform reliable instance alignment. These two modules are regularized by a Generalized Consistency Regularizer (GCR) for maintaining the consistency of their domain predictions. We further extend our framework to the polyp localization task and present a Centre Besiegement (CB) loss for better location optimization. Experimental results show that our framework outperforms other domain adaptation detectors by a large margin in the detection task meanwhile achieves the state-of-the-art recall rate of 87.5% in the localization task. The source code is available at https://github.com/CityU-AIM-Group/ConsolidatedPolypDA.

Original languageEnglish
Article number102052
Number of pages13
JournalMedical Image Analysis
Volume71
DOIs
Publication statusPublished - Jul 2021

Scopus Subject Areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging
  • Computer Vision and Pattern Recognition
  • Health Informatics
  • Computer Graphics and Computer-Aided Design

User-Defined Keywords

  • Adversarial training
  • Colonoscopic polyp detection
  • Domain adaptation
  • Style transfer

Fingerprint

Dive into the research topics of 'Consolidated domain adaptive detection and localization framework for cross-device colonoscopic images'. Together they form a unique fingerprint.

Cite this