TY - JOUR

T1 - Consistency analysis of an empirical minimum error entropy algorithm

AU - Fan, Jun

AU - Hu, Ting

AU - Wu, Qiang

AU - Zhou, Ding Xuan

PY - 2016

Y1 - 2016

N2 - In this paper we study the consistency of an empirical minimum error entropy (MEE) algorithm in a regression setting. We introduce two types of consistency. The error entropy consistency, which requires the error entropy of the learned function to approximate the minimum error entropy, is shown to be always true if the bandwidth parameter tends to 0 at an appropriate rate. The regression consistency, which requires the learned function to approximate the regression function, however, is a complicated issue. We prove that the error entropy consistency implies the regression consistency for homoskedastic models where the noise is independent of the input variable. But for heteroskedastic models, a counterexample is used to show that the two types of consistency do not coincide. A surprising result is that the regression consistency is always true, provided that the bandwidth parameter tends to infinity at an appropriate rate. Regression consistency of two classes of special models is shown to hold with fixed bandwidth parameter, which further illustrates the complexity of regression consistency of MEE. Fourier transform plays crucial roles in our analysis.

AB - In this paper we study the consistency of an empirical minimum error entropy (MEE) algorithm in a regression setting. We introduce two types of consistency. The error entropy consistency, which requires the error entropy of the learned function to approximate the minimum error entropy, is shown to be always true if the bandwidth parameter tends to 0 at an appropriate rate. The regression consistency, which requires the learned function to approximate the regression function, however, is a complicated issue. We prove that the error entropy consistency implies the regression consistency for homoskedastic models where the noise is independent of the input variable. But for heteroskedastic models, a counterexample is used to show that the two types of consistency do not coincide. A surprising result is that the regression consistency is always true, provided that the bandwidth parameter tends to infinity at an appropriate rate. Regression consistency of two classes of special models is shown to hold with fixed bandwidth parameter, which further illustrates the complexity of regression consistency of MEE. Fourier transform plays crucial roles in our analysis.

U2 - 10.1016/j.acha.2014.12.005

DO - 10.1016/j.acha.2014.12.005

M3 - Journal article

SN - 1063-5203

VL - 41

SP - 164

EP - 189

JO - Applied and Computational Harmonic Analysis

JF - Applied and Computational Harmonic Analysis

IS - 1

ER -