Comparative Transcriptomics Analysis of Brassica napus L. During Seed Maturation Reveals Dynamic Changes in Gene Expression between Embryos and Seed Coats and Distinct Expression Profiles of Acyl-CoA-Binding Proteins for Lipid Accumulation

Pan Liao, Helen K. Woodfield, John L. Harwood*, Mee Len Chye*, Simon Scofield

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Production of vegetable oils is a vital agricultural resource and oilseed rape (Brassica napus) is the third most important oil crop globally. Although the regulation of lipid biosynthesis in oilseeds is still not fully defined, the acyl-CoA-binding proteins (ACBPs) have been reported to be involved in such metabolism, including oil accumulation, in several plant species. In this study, progressive changes in gene expression in embryos and seed coats at different stages of seed development were comprehensively investigated by transcriptomic analyses in B. napus, revealing dynamic changes in the expression of genes involved in lipid biosynthesis. We show that genes encoding BnACBP proteins show distinct changes in expression at different developmental stages of seed development and show markedly different expression between embryos and seed coats. Both isoforms of the ankyrin-repeat BnACBP2 increased during the oil accumulation period of embryo development. By contrast, the expression of the three most abundant isoforms of the small molecular mass BnACBP6 in embryos showed progressive reduction, despite having the highest overall expression level. In seed coats, BnACBP3, BnACBP4 and BnACBP5 expression remained constant during development, whereas the two major isoforms of BnACBP6 increased, contrasting with the data from embryos. We conclude that genes related to fatty acid and triacylglycerol biosynthesis showing dynamic expression changes may regulate the lipid distribution in embryos and seed coats of B. napus and that BnACBP2 and BnACBP6 are potentially important for oil accumulation.

Original languageEnglish
Pages (from-to)2812-2825
Number of pages14
JournalPlant and Cell Physiology
Volume60
Issue number12
DOIs
Publication statusPublished - Dec 2019
Externally publishedYes

Scopus Subject Areas

  • Physiology
  • Plant Science
  • Cell Biology

User-Defined Keywords

  • ACBP
  • Brassica napus
  • Embryos
  • Fatty acid
  • Oilseed rape
  • Seed coats

Fingerprint

Dive into the research topics of 'Comparative Transcriptomics Analysis of Brassica napus L. During Seed Maturation Reveals Dynamic Changes in Gene Expression between Embryos and Seed Coats and Distinct Expression Profiles of Acyl-CoA-Binding Proteins for Lipid Accumulation'. Together they form a unique fingerprint.

Cite this