Comparative analysis of mammalian stanniocalcin genes

Robin Varghese, Chris K. C. Wong, Harminder Deol, Graham F. Wagner, Gabriel E. Dimattia*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

124 Citations (Scopus)

Abstract

The recent discovery of mammalian stanniocalcin (STC) prompted an investigation of its gene structure and expression pattern to study its function and regulation. We show that both the human and mouse genes are composed of four exons spanning about 13 kb, with 85% nucleotide sequence identity in coding regions. Remarkably high sequence conservation between species also exists in the approximately 3-kb 3'-untranslated region. Comparative analysis of the 5'-untranslated region and flanking DNA from the rat and human STC genes showed long stretches of CAG trinucleotide repeats and an additional (CA)25 dinucleotide repeat unique to the rat promoter. An analysis of STC expression in the mouse showed that ovary contained the highest level of messenger RNA, with lower, but detectable, levels in most tissues. In situ hybridization revealed strong, specific hybridization over the thecal-interstitial cells of the ovarian stroma, whereas immunohistochemical analysis indicated that STC was present not only in the stroma, but also in the corpora lutea and oocyte of the developing follicle. Consequently, STC may act as a signaling molecule between the thecal-interstitial cell compartment and the corpus luteum and oocyte, thereby regulating the activity of these structures in some way. These findings suggest that in addition to its role in mineral metabolism, STC has acquired an important function in reproduction during its evolution to mammals.

Original languageEnglish
Pages (from-to)4714-4725
Number of pages12
JournalEndocrinology
Volume139
Issue number11
DOIs
Publication statusPublished - 1 Nov 1998
Externally publishedYes

Scopus Subject Areas

  • Endocrinology

Fingerprint

Dive into the research topics of 'Comparative analysis of mammalian stanniocalcin genes'. Together they form a unique fingerprint.

Cite this