Chronic effects of coated silver nanoparticles on marine invertebrate larvae: A proof of concept study

Christine Ying Shan Chan, Jill Man Ying Chiu

Research output: Contribution to journalJournal articlepeer-review

28 Citations (Scopus)

Abstract

Silver nanoparticles (AgNPs), owing to their unique physical and chemical properties, have become increasingly popular in consumer products. However, data on their potential biological effects on marine organisms, especially invertebrates, remain very limited. This proof of principle study reports the chronic sub-lethal toxicity of two coated AgNPs (oleic acid coated AgNPs and polyvinylpyrrolidone coated AgNPs) on marine benthic invertebrate larvae across three phyla (i.e., the barnacle Balanus Amphitrite, the slipper-limpet Crepidula onyx, and the polychaete Hydroides elegans) in terms of growth, development, and metamorphosis. Bioaccumulation and biodistribution of silver were also investigated. Larvae were also exposed to silver nitrate (AgNO3) in parallel to distinguish the toxic effects derived from nano-silver and the aqueous form of silver. The sub-lethal effect of chronic exposure to coated AgNPs resulted in a significant retardation in growth and development, and reduction of larval settlement rate. The larval settlement rate of H. elegans was significantly lower in the coated AgNP treatment than the AgNO3 treatment, suggesting that the toxicity of coated AgNPs might not be solely evoked by the release of silver ions (Ag+) in the test medium. The three species accumulated silver effectively from coated AgNPs as well as AgNO3, and coated AgNPs were observed in the vacuoles of epithelial cell in the digestive tract of C. onyx. Types of surface coatings did not affect the sub-lethal toxicity of AgNPs. This study demonstrated that coated AgNPs exerted toxic effects in a species-specific manner, and their exposure might allow bioaccumulation of silver, and affect growth, development, and settlement of marine invertebrate larvae. This study also highlighted the possibility that coated AgNPs could be taken up through diet and the toxicity of coated AgNPs might be mediated through toxic Ag+ as well as the novel modalities of coated AgNPs.

Original languageEnglish
Article numbere0132457
JournalPLoS ONE
Volume10
Issue number7
DOIs
Publication statusPublished - 14 Jul 2015

Scopus Subject Areas

  • General Biochemistry,Genetics and Molecular Biology
  • General Agricultural and Biological Sciences
  • General

Fingerprint

Dive into the research topics of 'Chronic effects of coated silver nanoparticles on marine invertebrate larvae: A proof of concept study'. Together they form a unique fingerprint.

Cite this