Carbon dioxide reforming of methane to syngas over SiO2-supported rhodium catalysts

H. Y. Wang, C. T. Au*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

97 Citations (Scopus)

Abstract

The decomposition of CH4 and CO2 as well as the reaction between CH4 and CO2 over SiO2-supported rhodium catalysts has been investigated in the temperature range of 600-800°C over a pulse reactor. The initial activities for methane decomposition and CO2 decomposition increased with the increase of rhodium loading; whereas the activity for CO formation in the CH4+CO2 reaction was almost unaffected by the rhodium loading over catalysts with rhodium loading >0,05%. Different reaction behaviors of methane reforming with CO2 were observed at 700°C and 800°C. At 700°C, CO2 conversion was higher than CH4 conversion; whereas at 800°C, CH4 conversion was higher than CO2 conversion. The bond order conservation-Morse potential (BOC-MP) calculations indicate that the oxygen at on-top site can promote the dissociation of methane on the Rh(111) surface. Normal deuterium isotope effect was observed to be more noticeable on the methane conversion reaction than on the CO formation reaction, while no such effect was observed on the CO2 conversion reaction. The mechanism for CO and H2 formation in the reforming of methane with CO2 is discussed based on the results of the present work.

Original languageEnglish
Pages (from-to)239-252
Number of pages14
JournalApplied Catalysis A: General
Volume155
Issue number2
DOIs
Publication statusPublished - 31 Jul 1997

Scopus Subject Areas

  • Catalysis
  • Process Chemistry and Technology

User-Defined Keywords

  • Carbon dioxide
  • Methane
  • Reforming
  • Rhodium catalysts
  • Syngas

Fingerprint

Dive into the research topics of 'Carbon dioxide reforming of methane to syngas over SiO2-supported rhodium catalysts'. Together they form a unique fingerprint.

Cite this