@inbook{71541520766b4a62aef54b9bb537bcc7,
title = "Bridging the gap between theory and experiment to derive a detailed understanding of hammerhead ribozyme catalysis",
abstract = "Herein we summarize our progress toward the understanding of hammerhead ribozyme (HHR) catalysis through a multiscale simulation strategy. Simulation results collectively paint a picture of HHR catalysis: HHR first folds to form an electronegative active site pocket to recruit a threshold occupation of cationic charges, either a Mg2 + ion or multiple monovalent cations. Catalytically active conformations that have good in-line fitness are supported by specific metal ion coordination patterns that involve either a bridging Mg2 + ion or multiple Na+ ions, one of which is also in a bridging coordination pattern. In the case of a single Mg2 + ion bound in the active site, the Mg2 + ion undergoes a migration that is coupled with deprotonation of the nucleophile (C17:O2'). As the reaction proceeds, the Mg2 + ion stabilizes the accumulating charge of the leaving group and significantly increases the general acid ability of G8:O2'. Further computational mutagenesis simulations suggest that the disruptions due to mutations may severely impact HHR catalysis at different stages of the reaction. Catalytic mechanisms supported by the simulation results are consistent with available structural and biochemical experiments, and together they advance our understanding of HHR catalysis.",
keywords = "catalysis, combined QM/MM, enzyme, free energy, hammerhead ribozyme, mechanism, RNA, simulation",
author = "Lee, {Tai Sung} and Wong, {Kin Yiu} and Giambasu, {George M.} and York, {Darrin M.}",
note = "Funding Information: The authors are grateful for financial support provided by the National Institutes of Health (GM62248 and GM084149 to D. Y.). Computational resources were provided by the Minnesota Supercomputing Institute (MSI) and by the NSF TeraGrid through the Texas Advanced Computing Center and National Institute for Computational Sciences under grant number TG-MCB110101.",
year = "2013",
doi = "10.1016/B978-0-12-381286-5.00002-0",
language = "English",
isbn = "9780123812865",
series = "Progress in Molecular Biology and Translational Science",
publisher = "Elsevier B.V.",
pages = "25--91",
booktitle = "Catalytic RNA",
}