Bilinear probabilistic canonical correlation analysis via hybrid concatenations

Yang Zhou, Haiping LU, Yiu Ming CHEUNG

Research output: Contribution to conferencePaperpeer-review

3 Citations (Scopus)

Abstract

Canonical Correlation Analysis (CCA) is a classical technique for two-view correlation analysis, while Probabilistic CCA (PCCA) provides a generative and more general viewpoint for this task. Recently, PCCA has been extended to bilinear cases for dealing with two-view matrices in order to preserve and exploit the matrix structures in PCCA. However, existing bilinear PCCAs impose restrictive model assumptions for matrix structure preservation, sacrificing generative correctness or model flexibility. To overcome these drawbacks, we propose BPCCA, a new bilinear extension of PCCA, by introducing a hybrid joint model. Our new model preserves matrix structures indirectly via hybrid vector-based and matrix-based concatenations. This enables BPCCA to gain more model flexibility in capturing two-view correlations and obtain close-form solutions in parameter estimation. Experimental results on two real-world applications demonstrate the superior performance of BPCCA over competing methods.

Original languageEnglish
Pages2949-2955
Number of pages7
Publication statusPublished - 2017
Event31st AAAI Conference on Artificial Intelligence, AAAI 2017 - San Francisco, United States
Duration: 4 Feb 201710 Feb 2017

Conference

Conference31st AAAI Conference on Artificial Intelligence, AAAI 2017
Country/TerritoryUnited States
CitySan Francisco
Period4/02/1710/02/17

Scopus Subject Areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Bilinear probabilistic canonical correlation analysis via hybrid concatenations'. Together they form a unique fingerprint.

Cite this