Abstract
Substituted para-phenylenediamine (PPD) antioxidants have been extensively used to retard oxidative degradation of tire rubber and were found to pervade multiple environmental compartments. However, there is a paucity of research on the environmental occurrences of their transformation products. In this study, we revealed the co-occurrence of six PPD-derived quinones (PPD-Qs) along with eight PPDs in fine particulate matter (PM2.5) from two Chinese megacities, in which N,N′-bis(1,4-dimethylpentyl)-p-phenylenediamine quinone (77PD-Q) was identified and quantified for the first time. Prevalent occurrences of these emerging PPD-Qs were found in Taiyuan (5.59–8480 pg/m3) and Guangzhou (3.61–4490 pg/m3). Significantly higher levels of PPDs/PPD-Qs were observed at a roadside site, implying the possible contribution of vehicle emissions. Correlation analysis implied potential consistencies in the fate of these PPD-Qs and suggested that most of them were originated from the transformation of their parent PPDs. For different subpopulation groups under different exposure scenarios, the estimated daily intakes of PPD-Qs (0.16–1.25 ng kgbw–1 day–1) were comparable to those of their parent PPDs (0.19–1.41 ng kgbw–1 day–1), suggesting an important but overlooked exposure caused by novel PPD-Qs. Given the prolonged exposure of these antioxidants and their quinone derivatives to traffic-relevant occupations, further investigations on their toxicological and epidemiological effects are necessary.
Original language | English |
---|---|
Pages (from-to) | 10629–10637 |
Number of pages | 9 |
Journal | Environmental Science and Technology |
Volume | 56 |
Issue number | 15 |
Early online date | 14 Jul 2022 |
DOIs | |
Publication status | Published - 2 Aug 2022 |
Scopus Subject Areas
- Chemistry(all)
- Environmental Chemistry
User-Defined Keywords
- airborne quinones
- fine particulate matter
- human inhalation exposure
- para-phenylenediamine derivatives
- tire rubber additives