Bayesian inference for the onset time and epidemiological characteristics of emerging infectious diseases

Benyun Shi*, Sanguo Yang, Qi Tan, Lian Zhou, Yang Liu, Xiaohong Zhou, Jiming Liu*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

Abstract

Background: Emerging infectious diseases pose a significant threat to global public health. Timely detection and response are crucial in mitigating the spread of such epidemics. Inferring the onset time and epidemiological characteristics is vital for accelerating early interventions, but accurately predicting these parameters in the early stages remains challenging.

Methods: We introduce a Bayesian inference method to fit epidemic models to time series data based on state-space modeling, employing a stochastic Susceptible-Exposed-Infectious-Removed (SEIR) model for transmission dynamics analysis. Our approach uses the particle Markov chain Monte Carlo (PMCMC) method to estimate key epidemiological parameters, including the onset time, the transmission rate, and the recovery rate. The PMCMC algorithm integrates the advantageous aspects of both MCMC and particle filtering methodologies to yield a computationally feasible and effective means of approximating the likelihood function, especially when it is computationally intractable.

Results: To validate the proposed method, we conduct case studies on COVID-19 outbreaks in Wuhan, Shanghai and Nanjing, China, respectively. Using early-stage case reports, the PMCMC algorithm accurately predicted the onset time, key epidemiological parameters, and the basic reproduction number. These findings are consistent with empirical studies and the literature. 

Conclusion: This study presents a robust Bayesian inference method for the timely investigation of emerging infectious diseases. By accurately estimating the onset time and essential epidemiological parameters, our approach is versatile and efficient, extending its utility beyond COVID-19.

Original languageEnglish
Article number1406566
Number of pages12
JournalFrontiers in Public Health
Volume12
DOIs
Publication statusPublished - 17 May 2024

Scopus Subject Areas

  • Public Health, Environmental and Occupational Health

User-Defined Keywords

  • Bayesian inference
  • emerging infectious disease (EID)
  • epidemiological characteristics
  • Particle Markov chain Monte Carlo
  • SEIR compartmental model

Cite this