Bacillus amyloliquefaciens promotes cluster root formation of white lupin under low phosphorus by mediating auxin levels

Jinyong Yang, Shenglan Li, Xiangxue Zhou, Chongxuan Du, Ju Fang, Xing Li, Jun Zhao, Fan Ding, Yue Wang, Qian Zhang, Zhengrui Wang, Jianping Liu, Gangqiang Dong*, Jianhua Zhang*, Feiyun Xu*, Weifeng Xu*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

Abstract

White lupin (Lupinus albus L.) produces cluster roots to acquire more phosphorus under phosphorus deficiency. Bacillus amyloliquefaciens SQR9 contributes to plant growth, but whether and how it promotes cluster root formation in white lupin remain unclear. Here, we investigated the roles of SQR9 in cluster root formation under low phosphorus conditions using a microbial mutant and virus-induced gene silencing (VIGS) in white lupin. SQR9 substantially enhanced cluster root formation under low phosphorus conditions. The ysnE gene encodes an auxin biosynthesis enzyme in SQR9 and was associated with cluster root formation, as ysnE-defective SQR9 did not trigger cluster root formation. SQR9 inoculation induced the expression of PIN-formed2 (LaPIN2, encoding an auxin transporter) and YUCCA4 (LaYUC4, encoding an auxin biosynthesis enzyme) in white lupin roots. VIGS-mediated knockdown of LaPIN2 and LaYUC4 prevented wild-type SQR9-induced cluster root formation in white lupin. Finally, white lupin LaYUC4-derived auxin and SQR9-derived auxin pools were both transported by LaPIN2, promoting cluster root formation under low phosphorus conditions. Taken together, we propose that B. amyloliquefaciens promotes cluster root formation in white lupin under low phosphorus conditions by stimulating auxin biosynthesis and transport. Our results provide insights into the interplay between bacteria and root auxin in crop phosphorus use efficiency.

Original languageEnglish
Article numberkiae676
Number of pages11
JournalPlant Physiology
Volume197
Issue number2
DOIs
Publication statusPublished - Feb 2025

Fingerprint

Dive into the research topics of 'Bacillus amyloliquefaciens promotes cluster root formation of white lupin under low phosphorus by mediating auxin levels'. Together they form a unique fingerprint.

Cite this