Atomically Resolved Electrically Active Intragrain Interfaces in Perovskite Semiconductors

Songhua Cai*, Jun Dai, Zhipeng Shao, Mathias Uller Rothmann, Yinglu Jia, Caiyun Gao, Mingwei Hao, Shuping Pang, Peng Wang, Shu Ping Lau, Kai Zhu, Joseph J. Berry, Laura M. Herz, Xiao Cheng Zeng*, Yuanyuan Zhou*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

46 Citations (Scopus)

Abstract

Deciphering the atomic and electronic structures of interfaces is key to developing state-of-The-Art perovskite semiconductors. However, conventional characterization techniques have limited previous studies mainly to grain-boundary interfaces, whereas the intragrain-interface microstructures and their electronic properties have been much less revealed. Herein using scanning transmission electron microscopy, we resolved the atomic-scale structural information on three prototypical intragrain interfaces, unraveling intriguing features clearly different from those from previous observations based on standalone films or nanomaterial samples. These intragrain interfaces include composition boundaries formed by heterogeneous ion distribution, stacking faults resulted from wrongly stacked crystal planes, and symmetrical twinning boundaries. The atomic-scale imaging of these intragrain interfaces enables us to build unequivocal models for the ab initio calculation of electronic properties. Our results suggest that these structure interfaces are generally electronically benign, whereas their dynamic interaction with point defects can still evoke detrimental effects. This work paves the way toward a more complete fundamental understanding of the microscopic structure-property-performance relationship in metal halide perovskites.

Original languageEnglish
Pages (from-to)1910-1920
Number of pages11
JournalJournal of the American Chemical Society
Volume144
Issue number4
Early online date21 Jan 2022
DOIs
Publication statusPublished - 2 Feb 2022

Scopus Subject Areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Atomically Resolved Electrically Active Intragrain Interfaces in Perovskite Semiconductors'. Together they form a unique fingerprint.

Cite this