Artificial Intelligence–Based Approaches for Brain Tumor Segmentation in MRI: A Review

Khadija Bibi, Mehmood Nawaz*, Sheheryar Khan, Muhammad Daud, Anum Masood, Muhammad Ashraf Abdelgawad, Syed Muhammad Tariq Abbasi, Rizwan, Ahsan Khan, Wu Yuan*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

1 Citation (Scopus)

Abstract

Manually segmenting brain tumors in magnetic resonance imaging (MRI) is a time-consuming task that requires years of professional experience and clinical expertise. To address this challenge, researchers have proposed artificial intelligence–based strategies that enable quick and automatic segmentation of brain tumors. These AI techniques are crucial for the early identification of brain tumors, leading to earlier diagnoses and significant therapeutic benefits. convolutional neural networks (CNN), vision transformers (ViT), and other automated approaches that leverage machine learning and deep learning techniques have demonstrated effectiveness in diagnosing tumor type, size, and location. Consequently, brain tumor segmentation has emerged as a prominent issue in medical image analysis. This study aims to provide a concise review of MRI techniques and examine popular approaches for segmenting brain tumors. It highlights notable advancements in this field over the past several years. To ensure comprehensive coverage of technical topics, including network architecture design, segmentation in unbalanced settings, and multi-modality processes, over 200 scholarly publications have been meticulously selected for discussion. Based on this literature review, CNN-based methods and hybrid approaches have shown exceptional results in segmenting brain tumors from MRI images. Additionally, our study outlines the challenges and potential avenues for future research in brain tumor segmentation techniques.

Original languageEnglish
Article numbere70141
Number of pages27
JournalNMR in Biomedicine
Volume38
Issue number11
Early online date17 Sept 2025
DOIs
Publication statusPublished - Nov 2025

User-Defined Keywords

  • brain tumor segmentation
  • computed tomography
  • convolution neural networks
  • deep learning
  • foundation models
  • machine learning
  • magnetic resonance imaging
  • transformers

Fingerprint

Dive into the research topics of 'Artificial Intelligence–Based Approaches for Brain Tumor Segmentation in MRI: A Review'. Together they form a unique fingerprint.

Cite this