Abstract
Ultrasound treatment was applied to modify the physicochemical properties of an exopolysaccharide from mycelial culture of Schizophyllum commune. Molecular weight (MW) degradation, viscosity and anti-inflammatory property of ultrasonic treated polysaccharide were optimized with response surface methodology. The best ultrasonic parameters were obtained with a three-variable-three-level Box-Behnken design. The optimized conditions for efficient anti-inflammatory activity are initial concentration at 0.4%, ultrasonic power at 600 W, and duration of ultrasonic irradiation for 9 min. Under these conditions, the nitric oxide inhibition rate was 95 ± 0.03% which agreed closely with the predicted value (96%). Average MW of polysaccharide decreased after ultrasonic treatments. The viscosity of degraded polysaccharide dropped compared with native polysaccharide. The anti-inflammatory activity was improved by ultrasound treatment. The results suggested that ultrasound treatment is an effective approach to decrease the MW of polysaccharide with high anti-inflammatory activity. Ultrasonic treatment is a viable modification technology for high MW polymer materials.
Original language | English |
---|---|
Pages (from-to) | 100-105 |
Number of pages | 6 |
Journal | International Journal of Biological Macromolecules |
Volume | 91 |
DOIs | |
Publication status | Published - 1 Oct 2016 |
User-Defined Keywords
- Anti-inflammatory
- Response surface methodology
- Ultrasonic treatment