TY - JOUR
T1 - Animal bioturbation preserved in Pleistocene magadiite at Lake Magadi, Kenya Rift Valley, and its implications for the depositional environment of bedded magadiite
AU - Buatois, Luis A.
AU - Renaut, Robin W.
AU - Owen, Richard Bernhart
AU - Behrensmeyer, Anna K.
AU - Scott, Jennifer J.
N1 - Funding Information:
This research was funded by the Hong Kong Research Grants Council (to R.B.O. and R.W.R.) and the Natural Sciences and Engineering Research Council of Canada (to L.B., J.S. and R.W.R.). We thank the Kenyan National Council for Science and Technology, and the Kenyan Ministry of Mines for providing research and export permits, and the National Museums of Kenya, and local land-owners for local support. We especially thank Anthony Mbuthia for his continuing support, Tata Chemicals Magadi Ltd., and the communities around Lake Magadi, who welcomed us and provided invaluable local knowledge. The manuscript benefitted from the comments by the two reviewers and editor Nick Marriner.
PY - 2020/12/1
Y1 - 2020/12/1
N2 - Magadiite, a rare hydrous sodium-silicate mineral [NaSi7O13(OH)3·4(H2O)], was discovered about 50 years ago in sediments around Lake Magadi, a hypersaline alkaline lake fed by hot springs in the semi-arid southern Kenya Rift Valley. Today this harsh lacustrine environment excludes most organisms except microbial extremophiles, a few invertebrates (mostly insects), highly adapted fish (Alcolapia sp.), and birds including flamingos. Burrows discovered in outcrops of the High Magadi Beds (~25–9 ka) that predate the modern saline (trona) pan show that beetles and other invertebrates inhabit this extreme environment when conditions become more favourable. Burrows (cm-scale) preserved in magadiite in the High Magadi Beds are filled with mud, silt and sand from overlying sediments. Their stratigraphic context reveals upward-shallowing cycles from mud to interlaminated mud-magadiite to magadiite in dm-scale units. The burrows were formed when the lake floor became fresher and oxygenated, after a period when magadiite precipitated in shallow saline waters. The burrows, probably produced by beetles, show that trace fossils can provide evidence for short-term (possibly years to decades) changes in the contemporary environment that might not otherwise be recognised or preserved physically or chemically in the sediment record.
AB - Magadiite, a rare hydrous sodium-silicate mineral [NaSi7O13(OH)3·4(H2O)], was discovered about 50 years ago in sediments around Lake Magadi, a hypersaline alkaline lake fed by hot springs in the semi-arid southern Kenya Rift Valley. Today this harsh lacustrine environment excludes most organisms except microbial extremophiles, a few invertebrates (mostly insects), highly adapted fish (Alcolapia sp.), and birds including flamingos. Burrows discovered in outcrops of the High Magadi Beds (~25–9 ka) that predate the modern saline (trona) pan show that beetles and other invertebrates inhabit this extreme environment when conditions become more favourable. Burrows (cm-scale) preserved in magadiite in the High Magadi Beds are filled with mud, silt and sand from overlying sediments. Their stratigraphic context reveals upward-shallowing cycles from mud to interlaminated mud-magadiite to magadiite in dm-scale units. The burrows were formed when the lake floor became fresher and oxygenated, after a period when magadiite precipitated in shallow saline waters. The burrows, probably produced by beetles, show that trace fossils can provide evidence for short-term (possibly years to decades) changes in the contemporary environment that might not otherwise be recognised or preserved physically or chemically in the sediment record.
UR - http://www.scopus.com/inward/record.url?scp=85083803355&partnerID=8YFLogxK
U2 - 10.1038/s41598-020-63505-7
DO - 10.1038/s41598-020-63505-7
M3 - Journal article
C2 - 32321943
AN - SCOPUS:85083803355
SN - 2045-2322
VL - 10
JO - Scientific Reports
JF - Scientific Reports
IS - 1
M1 - 6794
ER -