TY - JOUR
T1 - An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws
AU - Borges, Rafael
AU - Carmona, Monique
AU - Costa, Bruno
AU - Don, Wai Sun
N1 - The first, second and third authors have been supported by CNPq, Grant 300315/98-8. The fourth author gratefully acknowledges the support of this work by the DOE under Contract Number DE-FG02-98ER25346 and AFOSR under Contract Number FA9550-05-1-0123, and would also like to thanks the Departamento de Matemática Aplicada, IM-UFRJ, for hosting his visit during the course of the research.
PY - 2008/3/1
Y1 - 2008/3/1
N2 - In this article we develop an improved version of the classical fifth-order weighted essentially non-oscillatory finite difference scheme of [G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228] (WENO-JS) for hyperbolic conservation laws. Through the novel use of a linear combination of the low order smoothness indicators already present in the framework of WENO-JS, a new smoothness indicator of higher order is devised and new non-oscillatory weights are built, providing a new WENO scheme (WENO-Z) with less dissipation and higher resolution than the classical WENO. This new scheme generates solutions that are sharp as the ones of the mapped WENO scheme (WENO-M) of Henrick et al. [A.K. Henrick, T.D. Aslam, J.M. Powers, Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys. 207 (2005) 542–567], however with a 25% reduction in CPU costs, since no mapping is necessary. We also provide a detailed analysis of the convergence of the WENO-Z scheme at critical points of smooth solutions and show that the solution enhancements of WENO-Z and WENO-M at problems with shocks comes from their ability to assign substantially larger weights to discontinuous stencils than the WENO-JS scheme, not from their superior order of convergence at critical points. Numerical solutions of the linear advection of discontinuous functions and nonlinear hyperbolic conservation laws as the one dimensional Euler equations with Riemann initial value problems, the Mach 3 shock–density wave interaction and the blastwave problems are compared with the ones generated by the WENO-JS and WENO-M schemes. The good performance of the WENO-Z scheme is also demonstrated in the simulation of two dimensional problems as the shock–vortex interaction and a Mach 4.46 Richtmyer–Meshkov Instability (RMI) modeled via the two dimensional Euler equations.
AB - In this article we develop an improved version of the classical fifth-order weighted essentially non-oscillatory finite difference scheme of [G.S. Jiang, C.W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126 (1996) 202–228] (WENO-JS) for hyperbolic conservation laws. Through the novel use of a linear combination of the low order smoothness indicators already present in the framework of WENO-JS, a new smoothness indicator of higher order is devised and new non-oscillatory weights are built, providing a new WENO scheme (WENO-Z) with less dissipation and higher resolution than the classical WENO. This new scheme generates solutions that are sharp as the ones of the mapped WENO scheme (WENO-M) of Henrick et al. [A.K. Henrick, T.D. Aslam, J.M. Powers, Mapped weighted essentially non-oscillatory schemes: achieving optimal order near critical points, J. Comput. Phys. 207 (2005) 542–567], however with a 25% reduction in CPU costs, since no mapping is necessary. We also provide a detailed analysis of the convergence of the WENO-Z scheme at critical points of smooth solutions and show that the solution enhancements of WENO-Z and WENO-M at problems with shocks comes from their ability to assign substantially larger weights to discontinuous stencils than the WENO-JS scheme, not from their superior order of convergence at critical points. Numerical solutions of the linear advection of discontinuous functions and nonlinear hyperbolic conservation laws as the one dimensional Euler equations with Riemann initial value problems, the Mach 3 shock–density wave interaction and the blastwave problems are compared with the ones generated by the WENO-JS and WENO-M schemes. The good performance of the WENO-Z scheme is also demonstrated in the simulation of two dimensional problems as the shock–vortex interaction and a Mach 4.46 Richtmyer–Meshkov Instability (RMI) modeled via the two dimensional Euler equations.
KW - WENO weights
KW - Hyperbolic conservation laws
KW - Smoothness indicators
KW - Weighted essentially non-oscillatory
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-38749131538&origin=inward
UR - https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=hkbuirimsintegration2023&SrcAuth=WosAPI&KeyUT=WOS:000254090100009&DestLinkType=FullRecord&DestApp=WOS_CPL
U2 - 10.1016/j.jcp.2007.11.038
DO - 10.1016/j.jcp.2007.11.038
M3 - Journal article
SN - 0021-9991
VL - 227
SP - 3191
EP - 3211
JO - Journal of Computational Physics
JF - Journal of Computational Physics
IS - 6
ER -