An Attention-based Rumor Detection Model with Tree-structured Recursive Neural Networks

Jing Ma, Wei Gao, Shafiq Joty, Kam Fai Wong

Research output: Contribution to journalJournal articlepeer-review

40 Citations (Scopus)


Rumor spread in social media severely jeopardizes the credibility of online content. Thus, automatic debunking of rumors is of great importance to keep social media a healthy environment. While facing a dubious claim, people often dispute its truthfulness sporadically in their posts containing various cues, which can form useful evidence with long-distance dependencies. In this work, we propose to learn discriminative features from microblog posts by following their non-sequential propagation structure and generate more powerful representations for identifying rumors. For modeling non-sequential structure, we first represent the diffusion of microblog posts with propagation trees, which provide valuable clues on how a claim in the original post is transmitted and developed over time. We then present a bottom-up and a top-down tree-structured models based on Recursive Neural Networks (RvNN) for rumor representation learning and classification, which naturally conform to the message propagation process in microblogs. To enhance the rumor representation learning, we reveal that effective rumor detection is highly related to finding evidential posts, e.g., the posts expressing specific attitude towards the veracity of a claim, as an extension of the previous RvNN-based detection models that treat every post equally. For this reason, we design discriminative attention mechanisms for the RvNN-based models to selectively attend on the subset of evidential posts during the bottom-up/top-down recursive composition. Experimental results on four datasets collected from real-world microblog platforms confirm that (1) our RvNN-based models achieve much better rumor detection and classification performance than state-of-the-art approaches; (2) the attention mechanisms for focusing on evidential posts can further improve the performance of our RvNN-based method; and (3) our approach possesses superior capacity on detecting rumors at a very early stage.

Original languageEnglish
Article number3391250
Number of pages28
JournalACM Transactions on Intelligent Systems and Technology
Issue number4
Early online date8 Jun 2020
Publication statusPublished - Aug 2020

Scopus Subject Areas

  • Theoretical Computer Science
  • Artificial Intelligence

User-Defined Keywords

  • neural attention
  • propagation tree
  • recursive neural networks
  • Rumor detection and classification
  • social media


Dive into the research topics of 'An Attention-based Rumor Detection Model with Tree-structured Recursive Neural Networks'. Together they form a unique fingerprint.

Cite this