Abstract
Objective: Our goal is to establish the feasibility of using an artificially intelligent chatbot in diverse healthcare settings to promote COVID-19 vaccination.
Methods: We designed an artificially intelligent chatbot deployed via short message services and web-based platforms. Guided by communication theories, we developed persuasive messages to respond to users' COVID-19-related questions and encourage vaccination. We implemented the system in healthcare settings in the U.S. between April 2021 and March 2022 and logged the number of users, topics discussed, and information on system accuracy in matching responses to user intents. We regularly reviewed queries and reclassified responses to better match responses to query intents as COVID-19 events evolved.
Results: A total of 2479 users engaged with the system, exchanging 3994 COVID-19 relevant messages. The most popular queries to the system were about boosters and where to get a vaccine. The system's accuracy rate in matching responses to user queries ranged from 54% to 91.1%. Accuracy lagged when new information related to COVID emerged, such as that related to the Delta variant. Accuracy increased when we added new content to the system.
Conclusions: It is feasible and potentially valuable to create chatbot systems using AI to facilitate access to current, accurate, complete, and persuasive information on infectious diseases. Such a system can be adapted to use with patients and populations needing detailed information and motivation to act in support of their health.
Methods: We designed an artificially intelligent chatbot deployed via short message services and web-based platforms. Guided by communication theories, we developed persuasive messages to respond to users' COVID-19-related questions and encourage vaccination. We implemented the system in healthcare settings in the U.S. between April 2021 and March 2022 and logged the number of users, topics discussed, and information on system accuracy in matching responses to user intents. We regularly reviewed queries and reclassified responses to better match responses to query intents as COVID-19 events evolved.
Results: A total of 2479 users engaged with the system, exchanging 3994 COVID-19 relevant messages. The most popular queries to the system were about boosters and where to get a vaccine. The system's accuracy rate in matching responses to user queries ranged from 54% to 91.1%. Accuracy lagged when new information related to COVID emerged, such as that related to the Delta variant. Accuracy increased when we added new content to the system.
Conclusions: It is feasible and potentially valuable to create chatbot systems using AI to facilitate access to current, accurate, complete, and persuasive information on infectious diseases. Such a system can be adapted to use with patients and populations needing detailed information and motivation to act in support of their health.
Original language | English |
---|---|
Number of pages | 17 |
Journal | Digital Health |
Volume | 9 |
DOIs | |
Publication status | Published - Jan 2023 |
Scopus Subject Areas
- Health Information Management
- Health Policy
- Health Informatics
- Computer Science Applications
User-Defined Keywords
- Artificial intelligent
- chatbot
- COVID-19 pandemic
- feasibility
- vaccine hesitancy