TY - JOUR
T1 - Adverse effects of triclosan on kidney in mice
T2 - Implication of lipid metabolism disorders
AU - Huang, Wei
AU - Cao, Guodong
AU - Deng, Chengliang
AU - Chen, Yanyan
AU - Wang, Tao
AU - Chen, Da
AU - Cai, Zongwei
N1 - This work was supported by the National Natural Science Foundation of China (No. 21806135 ), the General Research Fund (No. 12301518 ) from Research Grants Council of Hong Kong.
Publisher Copyright:
© 2021
PY - 2023/2
Y1 - 2023/2
N2 - Triclosan (TCS) is a ubiquitous antimicrobial used in daily consumer products. Previous reports have shown that TCS could induce hepatotoxicity, endocrine disruption, disturbance on immune function and impaired thyroid function. Kidney is critical in the elimination of toxins, while the effects of TCS on kidney have not yet been well-characterized. The aim of the present study was to investigate the effects of TCS exposure on kidney function and the possible underlying mechanisms in mice. Male C57BL/6 mice were orally exposed to TCS with the doses of 10 and 100 mg/(kg•day) for 13 weeks. TCS was dissolved in dimethyl sulfoxide (DMSO) and diluted by corn oil for exposure. Corn oil containing DMSO was used as vehicle control. Serum and kidney tissues were collected for study. Biomarkers associated with kidney function, oxidative stress, inflammation and fibrosis were assessed. Our results showed that TCS could cause renal injury as was revealed by increased levels of renal function markers including serum creatinine, urea nitrogen and uric acid, as well as increased oxidative stress, pro-inflammatory cytokines and fibrotic markers in a dose dependent manner, which were more significantly in 100 mg/(kg•day) group. Mass spectrometry-based analysis of metabolites related with lipid metabolism demonstrated the occurrence of lipid accumulation and defective fatty acid oxidation in 100 mg/(kg•day) TCS-exposed mouse kidney. These processes might lead to lipotoxicity and energy depletion, thus resulting in kidney fibrosis and functional decline. Taken together, the present study demonstrated that TCS could induce lipid accumulation and fatty acid metabolism disturbance in mouse kidney, which might contribute to renal function impairment. The present study further widens our insights into the adverse effects of TCS.
AB - Triclosan (TCS) is a ubiquitous antimicrobial used in daily consumer products. Previous reports have shown that TCS could induce hepatotoxicity, endocrine disruption, disturbance on immune function and impaired thyroid function. Kidney is critical in the elimination of toxins, while the effects of TCS on kidney have not yet been well-characterized. The aim of the present study was to investigate the effects of TCS exposure on kidney function and the possible underlying mechanisms in mice. Male C57BL/6 mice were orally exposed to TCS with the doses of 10 and 100 mg/(kg•day) for 13 weeks. TCS was dissolved in dimethyl sulfoxide (DMSO) and diluted by corn oil for exposure. Corn oil containing DMSO was used as vehicle control. Serum and kidney tissues were collected for study. Biomarkers associated with kidney function, oxidative stress, inflammation and fibrosis were assessed. Our results showed that TCS could cause renal injury as was revealed by increased levels of renal function markers including serum creatinine, urea nitrogen and uric acid, as well as increased oxidative stress, pro-inflammatory cytokines and fibrotic markers in a dose dependent manner, which were more significantly in 100 mg/(kg•day) group. Mass spectrometry-based analysis of metabolites related with lipid metabolism demonstrated the occurrence of lipid accumulation and defective fatty acid oxidation in 100 mg/(kg•day) TCS-exposed mouse kidney. These processes might lead to lipotoxicity and energy depletion, thus resulting in kidney fibrosis and functional decline. Taken together, the present study demonstrated that TCS could induce lipid accumulation and fatty acid metabolism disturbance in mouse kidney, which might contribute to renal function impairment. The present study further widens our insights into the adverse effects of TCS.
KW - Fatty acid oxidation
KW - Lipid accumulation
KW - Renal injury
KW - Triclosan
UR - http://www.scopus.com/inward/record.url?scp=85125008674&partnerID=8YFLogxK
U2 - 10.1016/j.jes.2021.11.032
DO - 10.1016/j.jes.2021.11.032
M3 - Journal article
C2 - 36182156
AN - SCOPUS:85125008674
SN - 1001-0742
VL - 124
SP - 481
EP - 490
JO - Journal of Environmental Sciences
JF - Journal of Environmental Sciences
ER -