Abstract
Adversarial training (AT) with imperfect supervision is significant but receives limited attention. To push AT towards more practical scenarios, we explore a brand new yet challenging setting, i.e., AT with complementary labels (CLs), which specify a class that a data sample does not belong to. However, the direct combination of AT with existing methods for CLs results in consistent failure, but not on a simple baseline of two-stage training. In this paper, we further explore the phenomenon and identify the underlying challenges of AT with CLs as intractable adversarial optimization and low-quality adversarial examples. To address the above problems, we propose a new learning strategy using gradually informative attacks, which consists of two critical components: 1) Warm-up Attack (Warm-up) gently raises the adversarial perturbation budgets to ease the adversarial optimization with CLs; 2) Pseudo-Label Attack (PLA) incorporates the progressively informative model predictions into a corrected complementary loss. Extensive experiments are conducted to demonstrate the effectiveness of our method on a range of benchmarked datasets. The code is publicly available at: https://github.com/RoyalSkye/ATCL.
Original language | English |
---|---|
Title of host publication | 36th Conference on Neural Information Processing Systems (NeurIPS 2022) |
Publisher | Neural Information Processing Systems Foundation |
Pages | 1-13 |
Number of pages | 13 |
Publication status | Published - Nov 2022 |
Event | 36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans Convention Center, New Orleans, United States Duration: 28 Nov 2022 → 9 Dec 2022 https://neurips.cc/Conferences/2022 https://openreview.net/group?id=NeurIPS.cc/2022/Conference https://proceedings.neurips.cc/paper_files/paper/2022 |
Publication series
Name | Advances in Neural Information Processing Systems |
---|---|
Volume | 35 |
ISSN (Print) | 1049-5258 |
Name | NeurIPS Proceedings |
---|
Conference
Conference | 36th Conference on Neural Information Processing Systems, NeurIPS 2022 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 28/11/22 → 9/12/22 |
Internet address |