Advances in cesium lead iodide perovskite solar cells: Processing science matters

Qingrong Huang, Yang Liu, Faming Li, Mingzhen Liu*, Yuanyuan ZHOU

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The prevailing perovskite solar cells (PSCs) employ hybrid organic–inorganic halide perovskites as light absorbers, but these materials exhibit relatively poor environmental stability, which potentially hinders the practical deployment of PSCs. One important strategy to address this issue is replacing the volatile and hygroscopic organic cations with inorganic cesium cations in the crystal structure, forming all-inorganic halide perovskites. In this context, CsPbI3 perovskite is drawing phenomenal attention, primarily because it exhibits an ideal bandgap of 1.7 eV for the use in tandem solar cells, and it shows significantly enhanced thermal stability that is the key to the long-term device operation. Within only half a decade, the power conversion efficiency (PCE) of CsPbI3 PSCs has ramped beyond 20%, which has been driven by inventions of numerous processing methods for high-quality CsPbI3 perovskite thin films. These methods are broadly classified into three categories: vapor deposition, nanocrystals assembly, and solution deposition. Herein we present a systematic review on these methods and related materials sciences. In particular, we comprehensively discuss the dimethylammonium-additive-based solution deposition, which has resulted into the best-performing CsPbI3 PSCs. We also present the challenges and prospects on future research towards the realization of the full potential of CsPbI3 PSCs.

Original languageEnglish
Pages (from-to)156-169
Number of pages14
JournalMaterials Today
Volume47
DOIs
Publication statusPublished - 2021

Scopus Subject Areas

  • Materials Science(all)
  • Condensed Matter Physics
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Advances in cesium lead iodide perovskite solar cells: Processing science matters'. Together they form a unique fingerprint.

Cite this