Abstract
Negative sampling is essential for implicit collaborative filtering to provide proper negative training signals so as to achieve desirable performance. We experimentally unveil a common limitation of all existing negative sampling methods that they can only select negative samples of a fixed hardness level, leading to the false positive problem (FPP) and false negative problem (FNP). We then propose a new paradigm called adaptive hardness negative sampling (AHNS) and discuss its three key criteria. By adaptively selecting negative samples with appropriate hardnesses during the training process, AHNS can well mitigate the impacts of FPP and FNP. Next, we present a concrete instantiation of AHNS called AHNSp<0, and theoretically demonstrate that AHNSp<0 can fit the three criteria of AHNS well and achieve a larger lower bound of normalized discounted cumulative gain. Besides, we note that existing negative sampling methods can be regarded as more relaxed cases of AHNS. Finally, we conduct comprehensive experiments, and the results show that AHNSp<0 can consistently and substantially outperform several state-of-the-art competitors on multiple datasets.
Original language | English |
---|---|
Title of host publication | Proceedings of the 38th AAAI Conference on Artificial Intelligence |
Pages | 8645-8652 |
Number of pages | 8 |
ISBN (Electronic) | 9781577358879 |
DOIs | |
Publication status | Published - 24 Mar 2024 |
Event | 38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, Canada Duration: 20 Feb 2024 → 27 Feb 2024 https://ojs.aaai.org/index.php/AAAI/issue/archive (Conference proceeding) |
Publication series
Name | Proceedings of the AAAI Conference on Artificial Intelligence |
---|---|
Publisher | Association for the Advancement of Artificial Intelligence |
Number | 8 |
Volume | 38 |
ISSN (Print) | 2159-5399 |
ISSN (Electronic) | 2374-3468 |
Conference
Conference | 38th AAAI Conference on Artificial Intelligence, AAAI 2024 |
---|---|
Country/Territory | Canada |
City | Vancouver |
Period | 20/02/24 → 27/02/24 |
Internet address |
|
Scopus Subject Areas
- Artificial Intelligence