Abstract
We argue that current discussions of criteria for actual causation are ill-posed in several respects. (1) The methodology of current discussions is by induction from intuitions about an infinitesimal fraction of the possible examples and counterexamples; (2) cases with larger numbers of causes generate novel puzzles; (3) “neuron” and causal Bayes net diagrams are, as deployed in discussions of actual causation, almost always ambiguous; (4) actual causation is (intuitively) relative to an initial system state since state changes are relevant, but most current accounts ignore state changes through time; (5) more generally, there is no reason to think that philosophical judgements about these sorts of cases are normative; but (6) there is a dearth of relevant psychological research that bears on whether various philosophical accounts are descriptive. Our skepticism is not directed towards the possibility of a correct account of actual causation; rather, we argue that standard methods will not lead to such an account. A different approach is required.
Once upon a time a hungry wanderer came into a village. He filled an iron cauldron with water, built a fire under it, and dropped a stone into the water. “I do like a tasty stone soup” he announced. Soon a villager added a cabbage to the pot, another added some salt and others added potatoes, onions, carrots, mushrooms, and so on, until there was a meal for all.
Once upon a time a hungry wanderer came into a village. He filled an iron cauldron with water, built a fire under it, and dropped a stone into the water. “I do like a tasty stone soup” he announced. Soon a villager added a cabbage to the pot, another added some salt and others added potatoes, onions, carrots, mushrooms, and so on, until there was a meal for all.
Original language | English |
---|---|
Pages (from-to) | 169–192 |
Number of pages | 24 |
Journal | Synthese |
Volume | 175 |
Issue number | 2 |
Early online date | 20 Mar 2009 |
DOIs | |
Publication status | Published - Jul 2010 |
User-Defined Keywords
- Actual causation
- Bayesian networks
- Combinatorics
- Intervention
- Intuitions