Abstract
Brassinosteroids (BRs) are important plant hormones that act synergistically with auxin to regulate a variety of plant developmental and physiological processes. In the past decade, genetic and biochemical studies have revealed a linear signaling pathway that relies on protein phosphorylation to transmit the BR signal into the nucleus, altering expression of hundreds of genes to promote plant growth. We conducted an activation-tagging based suppressor screen to look for Arabidopsis genes that, when overexpressed by inserted 35S enhancer elements, could suppress the dwarf phenotype of a weak BR receptor mutant bri1-301. This screen identified a total of six dominant activation-tagged bri1 suppressors (atbs-Ds). Using a plasmid rescue approach, we discovered that the bri1-301 suppression effect in four atbs-D mutants (atbs3-D to atbs6-D) was caused by overexpression of a YUCCA gene thought to be involved in tryptophan-dependent auxin biosynthesis. Interestingly, the three activation-tagged YUCCA genes belong to the YUCCA IIA subfamily that includes two other members out of 11 known Arabidopsis YUCCA genes. In addition, our molecular studies revealed a T-DNA insertion near a basic helix-loop-helix gene in atbs1-D and a T-DNA insertion in a region carrying a BR biosynthetic gene in atbs2-D. Further studies of these atbs-D mutants could lead to better understanding of the BR signaling process and the BR–auxin interaction.
Original language | English |
---|---|
Pages (from-to) | 260-268 |
Number of pages | 9 |
Journal | Molecular Plant |
Volume | 3 |
Issue number | 1 |
DOIs | |
Publication status | Published - Jan 2010 |
Scopus Subject Areas
- Molecular Biology
- Plant Science
User-Defined Keywords
- Auxin
- Brassinosteroid
- BRI1
- Bri1-301
- YUCCA