Abstract
In conventional supervised classification, true labels are required for individual instances. However, it could be prohibitive to collect the true labels for individual instances, due to privacy concerns or unaffordable annotation costs. This motivates the study on classification from aggregate observations (CFAO), where the supervision is provided to groups of instances, instead of individual instances. CFAO is a generalized learning framework that contains various learning problems, such as multiple-instance learning and learning from label proportions. The goal of this paper is to present a novel universal method of CFAO, which holds an unbiased estimator of the classification risk for arbitrary losses-previous research failed to achieve this goal. Practically, our method works by weighing the importance of each label for each instance in the group, which provides purified supervision for the classifier to learn. Theoretically, our proposed method not only guarantees the risk consistency due to the unbiased risk estimator but also can be compatible with arbitrary losses. Extensive experiments on various problems of CFAO demonstrate the superiority of our proposed method.
Original language | English |
---|---|
Title of host publication | Proceedings of 40th International Conference on Machine Learning, ICML 2023 |
Editors | Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, Jonathan Scarlett |
Publisher | ML Research Press |
Pages | 36804-36820 |
Number of pages | 17 |
Publication status | Published - Jul 2023 |
Event | 40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States Duration: 23 Jul 2023 → 29 Jul 2023 https://icml.cc/Conferences/2023 https://proceedings.mlr.press/v202/ https://openreview.net/group?id=ICML.cc/2023/Conference |
Publication series
Name | Proceedings of Machine Learning Research |
---|---|
Publisher | ML Research Press |
Volume | 202 |
ISSN (Print) | 2640-3498 |
Conference
Conference | 40th International Conference on Machine Learning, ICML 2023 |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 23/07/23 → 29/07/23 |
Internet address |
Scopus Subject Areas
- Artificial Intelligence
- Software
- Control and Systems Engineering
- Statistics and Probability