TY - JOUR
T1 - A tropospheric ozone maximum over the equatorial Southern Indian Ocean
AU - Zhang, L.
AU - Li, Q.B.
AU - Murray, L.T.
AU - Luo, M.
AU - Liu, H.
AU - Jiang, J. H.
AU - Mao, Y.
AU - Chen, D.
AU - Gao, M.
AU - Livesey, N.
N1 - Funding Information:
This research was supported in part by NASA grants NNX09AF07G and NNX08AF64G from the Atmospheric Chemistry Modeling and Analysis Program (ACMAP).
Publisher copyright:
© Author(s) 2012.
PY - 2012/5/14
Y1 - 2012/5/14
N2 - We examine the distribution of tropical tropospheric ozone (O3) from the Microwave Limb Sounder (MLS) and the Tropospheric Emission Spectrometer (TES) by using a global three-dimensional model of tropospheric chemistry (GEOS-Chem). MLS and TES observations of tropospheric O3 during 2005 to 2009 reveal a distinct, persistent O3 maximum, both in mixing ratio and tropospheric column, in May over the Equatorial Southern Indian Ocean (ESIO). The maximum is most pronounced in 2006 and 2008 and less evident in the other three years. This feature is also consistent with the total column O3 observations from the Ozone Mapping Instrument (OMI) and the Atmospheric Infrared Sounder (AIRS). Model results reproduce the observed May O3 maximum and the associated interannual variability. The origin of the maximum reflects a complex interplay of chemical and dynamic factors. The O3 maximum is dominated by the O3 production driven by lightning nitrogen oxides (NOx) emissions, which accounts for 62% of the tropospheric column O3 in May 2006. We find the contribution from biomass burning, soil, anthropogenic and biogenic sources to the O3 maximum are rather small. The O3 productions in the lightning outflow from Central Africa and South America both peak in May and are directly responsible for the O3 maximum over the western ESIO. The lightning outflow from Equatorial Asia dominates over the eastern ESIO. The interannual variability of the O3 maximum is driven largely by the anomalous anti-cyclones over the southern Indian Ocean in May 2006 and 2008. The lightning outflow from Central Africa and South America is effectively entrained by the anti-cyclones followed by northward transport to the ESIO.
AB - We examine the distribution of tropical tropospheric ozone (O3) from the Microwave Limb Sounder (MLS) and the Tropospheric Emission Spectrometer (TES) by using a global three-dimensional model of tropospheric chemistry (GEOS-Chem). MLS and TES observations of tropospheric O3 during 2005 to 2009 reveal a distinct, persistent O3 maximum, both in mixing ratio and tropospheric column, in May over the Equatorial Southern Indian Ocean (ESIO). The maximum is most pronounced in 2006 and 2008 and less evident in the other three years. This feature is also consistent with the total column O3 observations from the Ozone Mapping Instrument (OMI) and the Atmospheric Infrared Sounder (AIRS). Model results reproduce the observed May O3 maximum and the associated interannual variability. The origin of the maximum reflects a complex interplay of chemical and dynamic factors. The O3 maximum is dominated by the O3 production driven by lightning nitrogen oxides (NOx) emissions, which accounts for 62% of the tropospheric column O3 in May 2006. We find the contribution from biomass burning, soil, anthropogenic and biogenic sources to the O3 maximum are rather small. The O3 productions in the lightning outflow from Central Africa and South America both peak in May and are directly responsible for the O3 maximum over the western ESIO. The lightning outflow from Equatorial Asia dominates over the eastern ESIO. The interannual variability of the O3 maximum is driven largely by the anomalous anti-cyclones over the southern Indian Ocean in May 2006 and 2008. The lightning outflow from Central Africa and South America is effectively entrained by the anti-cyclones followed by northward transport to the ESIO.
UR - http://www.scopus.com/inward/record.url?eid=2-s2.0-84862077533&partnerID=MN8TOARS
U2 - 10.5194/acp-12-4279-2012
DO - 10.5194/acp-12-4279-2012
M3 - Journal article
SN - 1680-7316
VL - 12
SP - 4279
EP - 4296
JO - Atmospheric Chemistry and Physics
JF - Atmospheric Chemistry and Physics
ER -