A Scholastic-Realist Modal-Structuralism

Ahti Veikko Pietarinen*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

7 Citations (Scopus)


How are we to understand the talk about properties of structures the existence of which is conditional upon the assumption of the reality of those structures? Mathematics is not about abstract objects, yet unlike fictionalism, modal-structuralism respects the truth of theorems and proofs. But it is nominalistic with respect to possibilia. The problem is that, for fear of reducing possibilia to actualities, the second-order modal logic that claims to axiomatise modal existence has no real semantics. There is no cross-identification of higher-order mathematical entities and thus we cannot know what those entities are. I suggest that a scholastic notion of realism, interspersed with cross-identification of higher-order entities, can deliver the semantics without collapse. This semantics of modalities is related to Peirce's logic and his pragmaticist philosophy of mathematics.

Original languageEnglish
Pages (from-to)127-138
Number of pages12
JournalPhilosophia Scientiae
Issue number3
Publication statusPublished - 1 Oct 2014

Scopus Subject Areas

  • History and Philosophy of Science


Dive into the research topics of 'A Scholastic-Realist Modal-Structuralism'. Together they form a unique fingerprint.

Cite this