TY - JOUR
T1 - A novel natural PPARγ agonist, Gypenoside LXXV, ameliorates cognitive deficits by enhancing brain glucose uptake via the activation of Akt/GLUT4 signaling in db/db mice
AU - Meng, Xiangbao
AU - Zhang, Yuan
AU - Li, Zongyang
AU - Hu, Jinxian
AU - Zhang, Di
AU - Cao, Weiwei
AU - Li, Min
AU - Ma, Guoxu
AU - Wang, Sicen
AU - Cui, Ping
AU - Cai, Qian
AU - Huang, Guodong
N1 - Funding Information:
This project was supported by the Research Fund from Shenzhen Key Laboratory of Neurosurgery (ZDSYS20140509173142601), the Shenzhen Development and Reform Commissions Stroke Screening and Prevention Public Service Platform improving program, China Postdoctoral Science Foundation (2021M702285), the National Natural Science Foundation of China (81503290, 81772685, 81902522, 81760227, and 81703558), Guangdong Innovation Platform of Translational Research for Cerebrovascular Diseases, Natural Science Foundation of Guangdong Province (2018A030310647 and 2019A1515010311), the Basic research projects (subject arrangement) of Shenzhen Science and Technology Program (JCYJ20170413173149177 and JCYJ20180507184656626), and Shenzhen Double Chain Grant [2018]256.
Publisher Copyright:
© 2022 John Wiley & Sons Ltd.
PY - 2022/4
Y1 - 2022/4
N2 - Targeting the PPARγ might be a potential therapeutic strategy for diabetes-associated cognitive decline (DACD). In this study, Gypenoside LXXV (GP-75), a dammarane-type triterpene compound isolated from Gynostemma pentaphyllum, was found to be a novel PPARγ agonist using a dual-luciferase reporter assay system. However, whether GP-75 has protective effects against DACD remains unknown. Interestingly, intragastric administration of GP-75 (40 mg/kg/day) for 12 weeks significantly attenuated the cognitive deficit in db/db mice. GP-75 treatment significantly improved the glucose tolerance and lipid metabolism, and suppressed neuroinflammation. Notably, GP-75 treatment dramatically increased the uptake of glucose by the brain, as detected by 18F-FDG PET. Incubation of primary cortical neurons with GP-75 significantly increased 2-deoxyglucose uptake. In addition, GP-75 treatment markedly increased the p-Akt (Ser 473)/total Akt levels and the expression levels of PPARγ and GLUT4, while decreasing the levels of p-IRS-1 (Ser 616)/total IRS-1. Importantly, all of these protective effects mediated by GP-75 were abolished by cotreatment with the PPARγ antagonist, GW9662. However, GP-75-mediated PPARγ upregulation was not affected by coincubation with the phosphatidylinositol 3-kinase inhibitor, LY294002. Collectively, GP-75 might be a novel PPARγ agonist that ameliorates cognitive deficit by enhancing brain glucose uptake via the activation of Akt/GLUT4 signaling in db/db mice.
AB - Targeting the PPARγ might be a potential therapeutic strategy for diabetes-associated cognitive decline (DACD). In this study, Gypenoside LXXV (GP-75), a dammarane-type triterpene compound isolated from Gynostemma pentaphyllum, was found to be a novel PPARγ agonist using a dual-luciferase reporter assay system. However, whether GP-75 has protective effects against DACD remains unknown. Interestingly, intragastric administration of GP-75 (40 mg/kg/day) for 12 weeks significantly attenuated the cognitive deficit in db/db mice. GP-75 treatment significantly improved the glucose tolerance and lipid metabolism, and suppressed neuroinflammation. Notably, GP-75 treatment dramatically increased the uptake of glucose by the brain, as detected by 18F-FDG PET. Incubation of primary cortical neurons with GP-75 significantly increased 2-deoxyglucose uptake. In addition, GP-75 treatment markedly increased the p-Akt (Ser 473)/total Akt levels and the expression levels of PPARγ and GLUT4, while decreasing the levels of p-IRS-1 (Ser 616)/total IRS-1. Importantly, all of these protective effects mediated by GP-75 were abolished by cotreatment with the PPARγ antagonist, GW9662. However, GP-75-mediated PPARγ upregulation was not affected by coincubation with the phosphatidylinositol 3-kinase inhibitor, LY294002. Collectively, GP-75 might be a novel PPARγ agonist that ameliorates cognitive deficit by enhancing brain glucose uptake via the activation of Akt/GLUT4 signaling in db/db mice.
KW - glucose transporter 4
KW - insulin resistance
KW - microPET
KW - PPARγ
KW - type 2 diabetes mellitus
UR - http://www.scopus.com/inward/record.url?scp=85125057127&partnerID=8YFLogxK
U2 - 10.1002/ptr.7413
DO - 10.1002/ptr.7413
M3 - Journal article
C2 - 35192202
AN - SCOPUS:85125057127
SN - 0951-418X
VL - 36
SP - 1770
EP - 1784
JO - Phytotherapy Research
JF - Phytotherapy Research
IS - 4
ER -