Abstract
Fang et al. (Technometrics 42 (2000) 237) proposed a united approach for searching orthogonal fractional factorial designs. They conjecture an important "equivalence theorem" between the uniformity of experimental points over the domain and the design orthogonality. They showed numerically that uniformity of experimental points over the domain can imply design orthogonality and conjecture that every orthogonal design can be obtained by minimizing some measure of uniformity. This paper shows that their conjecture is only true in some special cases.
Original language | English |
---|---|
Pages (from-to) | 323-334 |
Number of pages | 12 |
Journal | Journal of Statistical Planning and Inference |
Volume | 113 |
Issue number | 1 |
DOIs | |
Publication status | Published - 1 Apr 2003 |
Externally published | Yes |
Scopus Subject Areas
- Statistics and Probability
- Statistics, Probability and Uncertainty
- Applied Mathematics
User-Defined Keywords
- Discrepancy
- Fractional factorial designs
- Orthogonality
- Uniformity
- Uniform design