TY - JOUR
T1 - A non-invertible Randomized Graph-based Hamming Embedding for generating cancelable fingerprint template
AU - Jin, Zhe
AU - Lim, Meng Hui
AU - Teoh, Andrew Beng Jin
AU - Goi, Bok Min
N1 - Funding Information:
This research is supported by Anhui Provincial Natural Science Foundation, China (No.: KJ2014A095) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2013006574) and Anhui Wonder University of Information Engineering, China (No.: XZR2013A04).
PY - 2014/6/1
Y1 - 2014/6/1
N2 - Biometric technology is likely to provide a new level of security to various applications. Yet if the stored biometric template is compromised, invasion of user privacy is inevitable. Since biometric is irreplaceable and irrevocable, such an invasion implies a permanent loss of identity. In this paper, a fingerprint template protection technique is proposed to secure the fingerprint minutiae. Remarkably, by incorporating Randomized Graph-based Hamming Embedding (RGHE), the generated binary template can be strongly protected against inversion. The proposed method adopts a minutiae descriptor, dubbed as minutiae vicinity decomposition (MVD) to derive a set of randomized geometrical invariant features together with random projection. The discrimination of randomized MVD is then enhanced by User-specific Minutia Vicinities Collection scheme and embedded into a Hamming space by means of Graph-based Hamming Embedding. The resultant binary template enjoys four merits: (1) strong concealment of the minutia vicinity, thus effectively protects the location and orientation of minutiae. (2) Well preservation of the discriminability of MVD in the Hamming space with respect to the Euclidean space without accuracy performance degradation. (3) Template is revocable due to user-specific random projection. (4) Speedy matching attributed to bit-wise operations. Promising experimental results on FVC2002 database vindicate the feasibility of the proposed technique.
AB - Biometric technology is likely to provide a new level of security to various applications. Yet if the stored biometric template is compromised, invasion of user privacy is inevitable. Since biometric is irreplaceable and irrevocable, such an invasion implies a permanent loss of identity. In this paper, a fingerprint template protection technique is proposed to secure the fingerprint minutiae. Remarkably, by incorporating Randomized Graph-based Hamming Embedding (RGHE), the generated binary template can be strongly protected against inversion. The proposed method adopts a minutiae descriptor, dubbed as minutiae vicinity decomposition (MVD) to derive a set of randomized geometrical invariant features together with random projection. The discrimination of randomized MVD is then enhanced by User-specific Minutia Vicinities Collection scheme and embedded into a Hamming space by means of Graph-based Hamming Embedding. The resultant binary template enjoys four merits: (1) strong concealment of the minutia vicinity, thus effectively protects the location and orientation of minutiae. (2) Well preservation of the discriminability of MVD in the Hamming space with respect to the Euclidean space without accuracy performance degradation. (3) Template is revocable due to user-specific random projection. (4) Speedy matching attributed to bit-wise operations. Promising experimental results on FVC2002 database vindicate the feasibility of the proposed technique.
KW - Cancelable fingerprint template
KW - Fingerprint template protection
KW - Non-invertible transform
KW - Randomized Graph-based Hamming Embedding
UR - http://www.scopus.com/inward/record.url?scp=84896513435&partnerID=8YFLogxK
U2 - 10.1016/j.patrec.2014.02.011
DO - 10.1016/j.patrec.2014.02.011
M3 - Journal article
AN - SCOPUS:84896513435
SN - 0167-8655
VL - 42
SP - 137
EP - 147
JO - Pattern Recognition Letters
JF - Pattern Recognition Letters
IS - 1
ER -