Abstract
With the wide applications of Gaussian mixture clustering, e.g., in semantic video classification [H. Luo, J. Fan, J. Xiao, X. Zhu, Semantic principal video shot classification via mixture Gaussian, in: Proceedings of the 2003 International Conference on Multimedia and Expo, vol. 2, 2003, pp. 189-192], it is a nontrivial task to select the useful features in Gaussian mixture clustering without class labels. This paper, therefore, proposes a new feature selection method, through which not only the most relevant features are identified, but the redundant features are also eliminated so that the smallest relevant feature subset can be found. We integrate this method with our recently proposed Gaussian mixture clustering approach, namely rival penalized expectation-maximization (RPEM) algorithm [Y.M. Cheung, A rival penalized EM algorithm towards maximizing weighted likelihood for density mixture clustering with automatic model selection, in: Proceedings of the 17th International Conference on Pattern Recognition, 2004, pp. 633-636; Y.M. Cheung, Maximum weighted likelihood via rival penalized EM for density mixture clustering with automatic model selection, IEEE Trans. Knowl. Data Eng. 17(6) (2005) 750-761], which is able to determine the number of components (i.e., the model order selection) in a Gaussian mixture automatically. Subsequently, the data clustering, model selection, and the feature selection are all performed in a single learning process. Experimental results have shown the efficacy of the proposed approach.
Original language | English |
---|---|
Pages (from-to) | 243-250 |
Number of pages | 8 |
Journal | Pattern Recognition |
Volume | 42 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2009 |
Scopus Subject Areas
- Software
- Signal Processing
- Computer Vision and Pattern Recognition
- Artificial Intelligence
User-Defined Keywords
- Clustering
- Feature selection
- Gaussian mixture
- Redundance
- Relevance