A lectin of a non-invasive apple snail as an egg defense against predation alters the rat gut morphophysiology

Santiago Ituarte, Tabata Romina Brola, Patricia Elena Fernández, Huawei Mu, Jianwen QIU, Horacio Heras, Marcos Sebastián Dreon*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

8 Citations (Scopus)


The eggs of the freshwater Pomacea apple snails develop above the water level, exposed to varied physical and biological stressors. Their high hatching success seems to be linked to their proteins or perivitellins, which surround the developing embryo providing nutrients, sunscreens and varied defenses. The defensive mechanism has been unveiled in P. canaliculata and P. maculata eggs, where their major perivitellins are pigmented, non-digestible and provide a warning coloration while another perivitellin acts as a toxin. In P. scalaris, a species sympatric to the former, the defense strategy seems different, since no toxin was found and the major perivitellin, PsSC, while also colored and non-digestible, is a carbohydrate-binding protein. In this study we examine the structure and function of PsSC by sequencing its subunits, characterizing its carbohydrate binding profile and evaluating its effect on gut cells. Whereas cDNA sequencing and database search showed no lectin domain, glycan array carbohydrate binding profile revealed a strong specificity for glycosphingolipids and ABO group antigens. Moreover, PsSC agglutinated bacteria in a dose-dependent manner. Inspired on the defensive properties of seed lectins we evaluated the effects of PsSC on intestinal cells both in vitro (Caco-2 and IEC-6 cells) and in the gastrointestinal tract of rats. PsSC binds to Caco-2 cell membranes without reducing its viability, while a PsSC-containing diet temporarily induces large epithelium alterations and an increased absorptive surface. Based on these results, we propose that PsSC is involved in embryo defenses by altering the gut morphophysiology of potential predators, a convergent role to plant defensive lectins.

Original languageEnglish
Article numbere0198361
JournalPLoS ONE
Issue number6
Publication statusPublished - Jun 2018

Scopus Subject Areas

  • Biochemistry, Genetics and Molecular Biology(all)
  • Agricultural and Biological Sciences(all)
  • General


Dive into the research topics of 'A lectin of a non-invasive apple snail as an egg defense against predation alters the rat gut morphophysiology'. Together they form a unique fingerprint.

Cite this