A comparative analysis of morphology, microstructure, and volatile metabolomics of leaves at varied developmental stages in Ainaxiang (Blumea balsamifera (Linn.) DC.)

Xiaolu Chen, Yanqun Li, Yuxin Pang, Wanyun Shen, Qilei Chen, Liwei Liu, Xueting Luo, Zhenxia Chen, Xingfei Li, Yulan Li, Yingying Zhang, Mei Huang, Chao Yuan, Dan Wang, Lingliang Guan, Yuchen Liu, Quan Yang, Hubiao Chen*, Hong Wu*, Fulai Yu*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

2 Citations (Scopus)

Abstract

Introduction: Ainaxiang (Blumea balsamifera (Linn.) DC.) is cultivated for the extraction of (-)-borneol and other pharmaceutical raw materials due to its abundant volatile oil. However, there is limited knowledge regarding the structural basis and composition of volatile oil accumulation in fresh B. balsamifera leaves. Methods: To address this problem, we compare the fresh leaves’ morphology, microstructure, and volatile metabonomic at different development stages, orderly defined from the recently unfolded young stage (S1) to the senescent stage (S4). Results and discussion: Distinct differences were observed in the macro-appearance and microstructure at each stage, particularly in the B. balsamifera glandular trichomes (BbGTs) distribution. This specialized structure may be responsible for the accumulation of volatile matter. 213 metabolites were identified through metabolomic analysis, which exhibited spatiotemporal accumulation patterns among different stages. Notably, (-)-borneol was enriched at S1, while 10 key odor metabolites associated with the characteristic balsamic, borneol, fresh, and camphor aromas of B. balsamifera were enriched in S1 and S2. Ultra-microstructural examination revealed the involvement of chloroplasts, mitochondria, endoplasmic reticulum, and vacuoles in the synthesizing, transporting, and storing essential oils. These findings confirm that BbGTs serve as the secretory structures in B. balsamifera, with the population and morphology of BbGTs potentially serving as biomarkers for (-)-borneol accumulation. Overall, young B. balsamifera leaves with dense BbGTs represent a rich (-)-borneol source, while mesophyll cells contribute to volatile oil accumulation. These findings reveal the essential oil accumulation characteristics in B. balsamifera, providing a foundation for further understanding.

Original languageEnglish
Article number1285616
Number of pages16
JournalFrontiers in Plant Science
Volume14
DOIs
Publication statusPublished - 14 Nov 2023

Scopus Subject Areas

  • Plant Science

User-Defined Keywords

  • Asteraceae
  • chloroplast
  • development
  • fresh leaf
  • GC-MS
  • glandular secretory trichomes
  • terpene
  • volatile

Fingerprint

Dive into the research topics of 'A comparative analysis of morphology, microstructure, and volatile metabolomics of leaves at varied developmental stages in Ainaxiang (Blumea balsamifera (Linn.) DC.)'. Together they form a unique fingerprint.

Cite this