Abstract
In this paper, we study a new tensor eigenvalue problem, which involves E- and S-eigenvalues as its special cases. Some theoretical results such as existence of an eigenvalue and the number of eigenvalues are given. For an application of the proposed eigenvalue problem, we establish a tensor model for a higher-order multivariate Markov chain. The core issue of this problem is to study a stationary probability distribution of a higher-order multivariate Markov chain. A sufficient condition of the unique stationary positive distribution is given. An algorithm for computing stationary probability distribution is also developed. Numerical examples of applications in stock market modeling, sales demand prediction and biological sequence analysis are given to illustrate the proposed tensor model and the computed stationary probability distribution can provide a better prediction in these Markov chain applications.
Original language | English |
---|---|
Pages (from-to) | 1008-1025 |
Number of pages | 18 |
Journal | Computers and Mathematics with Applications |
Volume | 78 |
Issue number | 3 |
DOIs | |
Publication status | Published - 1 Aug 2019 |
Scopus Subject Areas
- Modelling and Simulation
- Computational Theory and Mathematics
- Computational Mathematics
User-Defined Keywords
- Eigenpair
- Higher-order
- Markov chain
- Multivariate
- Stationary probability distribution
- Tensor