Abstract
We are interested in locations of multiple facilities in the plane with the aim of minimizing the sum of weighted distance between these facilities and regional customers, where the distance between a facility and a regional customer is evaluated by the farthest distance from this facility to the demand region. By applying the well-known location-allocation heuristic, the main task for solving such a problem turns out to solve a number of constrained Weber problems (CWPs). This paper focuses on the computational contribution in this topic by developing a variant of the classical Barzilai-Borwein (BB) gradient method to solve the reduced CWPs. Consequently, a hybrid Cooper type method is developed to solve the problem under consideration. Preliminary numerical results are reported to verify the evident effectiveness of the new method.
Original language | English |
---|---|
Pages (from-to) | 1275-1295 |
Number of pages | 21 |
Journal | Computational Optimization and Applications |
Volume | 51 |
Issue number | 3 |
DOIs | |
Publication status | Published - Apr 2012 |
Scopus Subject Areas
- Control and Optimization
- Computational Mathematics
- Applied Mathematics
User-Defined Keywords
- Barzilai-Borwein gradient method
- Facility location
- Farthest distance
- Regional demand
- Weiszfeld procedure