基于深度学习的新型冠状病毒肺炎诊断研究综述

Translated title of the contribution: Survey of Studies of COVID-19 Diagnosis Based on Deep Learning

Jiangping Tang, Xiaofei Zhou, Xin He, Xiaowen Chu, Shifeng Li, Qingrui Chang, Jiyong Zhang*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

2 Citations (Scopus)

Abstract

新型冠状病毒肺炎(COVID-19)具有高传染性和高致病性,严重威胁人民群众的生命安全和身体健康,快 速准确地检测和诊断 COVID-19 对于疫情控制至关重要。目前 COVID-19 检测诊断方法主要包括核酸检测和基于 医学影像的人工诊断,但是核酸检测耗时较长并且需要专用的测试盒,而基于医学影像的人工诊断过于依赖专业 知识,分析耗时较长且难以发现隐匿病变。随着 X 射线图像和计算机断层扫描图像数据集的相继提出,科研人员 在此基础上构建基于深度学习的 COVID-19 检测诊断模型,有效辅助了医学专家对 COVID-19 的高效诊断治疗。 总结用于 COVID-19 检测诊断的主流影像数据集和相关评价指标,以模型任务和影像数据类型 2 个角度分类介绍 现有基于深度学习的 COVID-19 检测诊断模型,从骨干网络、数据集、影像类型、性能表现、分类种类和开源情况 6 个维度进行比较与分析。此外,介绍用于抗击 COVID-19 的优秀应用系统,并探讨该领域的未来发展趋势。

Translated title of the contributionSurvey of Studies of COVID-19 Diagnosis Based on Deep Learning
Original languageChinese (Simplified)
Article number1000-3428(2021)05-0001-15
Number of pages15
JournalJisuanji Gongcheng/Computer Engineering
Volume47
Issue number5
DOIs
Publication statusPublished - May 2021

Scopus Subject Areas

  • Software
  • Hardware and Architecture
  • Computer Networks and Communications
  • Computer Graphics and Computer-Aided Design
  • Computational Theory and Mathematics

User-Defined Keywords

  • Computer Tomography CT image
  • Corona Virus Disease 2019 COVID-19
  • Deep learning
  • Detection and diagnosis model
  • Epidemic control
  • X-ray image

Fingerprint

Dive into the research topics of 'Survey of Studies of COVID-19 Diagnosis Based on Deep Learning'. Together they form a unique fingerprint.

Cite this